Pracownia EEG/EEG spoczynkowe: Różnice pomiędzy wersjami
AnnADuszyk (dyskusja | edycje) |
|||
(Nie pokazano 20 wersji utworzonych przez 4 użytkowników) | |||
Linia 1: | Linia 1: | ||
+ | [[Pracownia EEG|Pracownia EEG]] / EEG spoczynkowe, artefakty | ||
==Podstawowe grafoelementy zapisu EEG i ich główne cechy== | ==Podstawowe grafoelementy zapisu EEG i ich główne cechy== | ||
− | ===Rytm | + | ===Rytm δ=== |
− | Przebieg rytmu delta zaprezentowano na <xr id="uid3"> rysunku %i</xr>. Jest to wysokoamplitudowa aktywność o niskiej częstości (0-4 Hz) i czasie trwania co najmniej 1/4 s. Do celów praktycznych przyjęto, że dolną granicą częstości jest 0,5 Hz. Pojawiające się podczas głębokiego snu fale delta o amplitudzie przekraczającej 75 | + | Przebieg rytmu delta zaprezentowano na <xr id="uid3"> rysunku %i</xr>. Jest to wysokoamplitudowa aktywność o niskiej częstości (0-4 Hz) i czasie trwania co najmniej 1/4 s. Do celów praktycznych przyjęto, że dolną granicą częstości jest 0,5 Hz. Pojawiające się podczas głębokiego snu fale delta o amplitudzie przekraczającej 75 μV nazywa się falami wolnymi (ang. ''slow wave activity'', SWA). Występowanie SWA spowodowane jest wysoką synchronizacją neuronów kory (większą synchronizację spotyka się tylko podczas ataku epilepsji). Fale delta rejestruje się także podczas głębokiej medytacji, u małych dzieci i w przypadku pewnego rodzaju uszkodzeń mózgu. |
[[Plik:SWA.png|center|800px|thumb|<figure id="uid3" />Fale delta w czasie snu w zapisie polisomnograficznym.]] | [[Plik:SWA.png|center|800px|thumb|<figure id="uid3" />Fale delta w czasie snu w zapisie polisomnograficznym.]] | ||
− | ===Rytm | + | ===Rytm θ=== |
− | Rytmem teta ( | + | Rytmem teta (ang. ''theta'') (<xr id="uid9"> rys. %i</xr>) nazywamy aktywność w paśmie częstości od 3 do 7 Hz i rozpiętości (ang. ''peak-to-peak'') rzędu kilkudziesięciu μV. Charakterystyczne fale teta występują np. w okresie snu płytkiego — przypuszcza się że w tym czasie następuje przyswajanie i utrwalanie uczonych treści. Fale teta są najczęściej występującymi falami mózgowymi podczas medytacji, transu, hipnozy, intensywnego marzenia, intensywnych emocji. Odmienny rodzaj fal teta jest związany z aktywnością poznawczą, kojarzeniem (w szczególności uwagą), a także procesami pamięciowymi (tzw. rytm FMΘ — ''frontal midline theta''). Jest on obserwowany głównie w przyśrodkowej części przedniej części mózgu. |
Cechy charakterystyczne: | Cechy charakterystyczne: | ||
Linia 22: | Linia 23: | ||
[[Plik:Fala pila.png|800px|center|thumb|<figure id="uid9" />Przykład rytmu teta we śnie.]] | [[Plik:Fala pila.png|800px|center|thumb|<figure id="uid9" />Przykład rytmu teta we śnie.]] | ||
− | ===Rytm | + | ===Rytm α=== |
Fala alfa to jedna z najwcześniej zaobserwowanych struktur (grafoelementów) EEG. | Fala alfa to jedna z najwcześniej zaobserwowanych struktur (grafoelementów) EEG. | ||
Linia 88: | Linia 89: | ||
</ul> | </ul> | ||
− | ===Rytm | + | ===Rytm β=== |
− | [[Plik:EEG_beta_1.png|768px|thumb|<figure id="uid28" />Rytm beta. Na osi pionowej | + | [[Plik:EEG_beta_1.png|768px|thumb|<figure id="uid28" />Rytm beta. Na osi pionowej — amplituda w μV, na osi poziomej — czas.]] |
− | Fale beta ( | + | Fale beta (<xr id="uid28">rys.</xr>) to niskoamplitudowe oscylacje o częstości w przedziale 13-30 Hz. W paśmie beta wyróżnia się następujące przedziały: wolne fale beta (12-15 Hz), właściwe, średnie pasmo beta (15-18 Hz) i szybkie fale beta, o częstości powyżej 19 Hz. Ta mało zsynchronizowana praca neuronów charakteryzuje zwykłą codzienną aktywność kory mózgowej u człowieka, percepcję zmysłową i pracę umysłową. Specyficzna aktywność beta towarzyszy również stanom po zażyciu niektórych leków. Fale beta zazwyczaj występują w okolicy czołowej. Obrazują one zaangażowanie kory mózgowej w aktywność poznawczą. Fale beta o małej amplitudzie występują podczas koncentracji uwagi, gdy mózg nastawiony jest na świadomy odbiór bodźców zewnętrznych za pomocą wszystkich zmysłów. |
Cechy charakterystyczne: | Cechy charakterystyczne: | ||
Linia 112: | Linia 113: | ||
</ul> | </ul> | ||
− | |||
− | ===Fale | + | ===Fale γ=== |
− | [[Plik:EEG_gamma_1.png|768px|thumb|<figure id="uid30" />Rytm gamma. Na osi pionowej | + | [[Plik:EEG_gamma_1.png|768px|thumb|<figure id="uid30" />Rytm gamma. Na osi pionowej — amplituda w μV, na osi poziomej — czas.]] |
− | Fale gamma ( | + | Fale gamma (<xr id="uid30"> rys.</xr>) to fale mózgowe o częstości w okolicach 40 Hz (30-80 Hz). Aktywność w paśmie 80-200 Hz określa się natomiast jako wysokoczęstotliwościową (ang. ''high'') gammę. Rytm gamma towarzyszy aktywności ruchowej i funkcjom motorycznym. Fale gamma związane są też z wyższymi procesami poznawczymi, m. in. percepcją sensoryczną, pamięcią. Przypuszcza się, że rytm gamma o częstotliwości około 40 Hz ma związek ze świadomością percepcyjną (dotyczącą wrażeń zmysłowych i ich postrzegania) oraz związany jest z integracją poszczególnych modalności zmysłowych w jeden spostrzegany obiekt. Aktywność high-gamma występuje podczas aktywacji kory mózgowej, zarówno przez bodźce zewnętrzne (np. dotykowe, wzrokowe), jak i wewnętrzne (przygotowanie ruchu, mowa). Fale o częstościach 100-250 Hz nazywane są ''ripples''. Rejestruje się je w sygnale z implantowanych mikroelektrod, a wysoko częstościową aktywność ''fast ripples'' (250-600 Hz) w szczególności u pacjentów z epilepsją, w obszarze ogniska epileptycznego. |
===Wrzeciona snu=== | ===Wrzeciona snu=== | ||
− | Wrzeciona snu (ang. ''sleep spindles'') ( | + | Wrzeciona snu (ang. ''sleep spindles'') (<xr id="uid32"> rys.</xr>) to charakterystyczne struktury zaobserwowane już niemal od samych początków historii pomiarów EEG. Występują podczas umiarkowanie głębokiego snu. Wrzecionami snu nazywamy aktywność o częstości 11-15 Hz i czasie trwania 0,5-1,5 s. Obwiednia tych krótkich salw dość szybkiej aktywności o niewielkiej amplitudzie przypomina kształt wrzeciona. Wrzeciona pojawiają się we wszystkich odprowadzeniach, z tym, że ich amplituda i częstość może się nieznacznie zmieniać przy przejściu od przodu do tyłu głowy (od wrzecion „wolnych” po „szybkie”). Wrzeciona snu mogą występować w parach z kompleksami K. |
[[Plik:Wrzeciona.png|800px|center|thumb|<figure id="uid32" />Trzy wrzeciona snu.]] | [[Plik:Wrzeciona.png|800px|center|thumb|<figure id="uid32" />Trzy wrzeciona snu.]] | ||
Linia 195: | Linia 195: | ||
===Żucie, ruchy języka=== | ===Żucie, ruchy języka=== | ||
− | Artefakt związany z żuciem to głównie potencjały od czynności elektrycznej mięśni o częstości występowania skorelowanej z rytmicznie powtarzającym się ruchem szczęk. | + | Artefakt związany z żuciem to głównie potencjały od czynności elektrycznej mięśni o częstości występowania skorelowanej z rytmicznie powtarzającym się ruchem szczęk. |
− | |||
[[Plik:Artefakt_zucie.png|center|thumb| 800px|Artefakt wywołany żuciem.]] | [[Plik:Artefakt_zucie.png|center|thumb| 800px|Artefakt wywołany żuciem.]] | ||
Linia 202: | Linia 201: | ||
Drżenie kończyn może być spowodowane chorobą (np. Parkinsona) lub długotrwałym siedzeniem w mało komfortowej pozycji. Ruchy kończyn będą wywoływały także ledwo zauważalne ruchy głowy. W sytuacji, gdy badana osoba cierpi na chorobę Parkinsona, drżenia kończyn prowadzą do powstania rytmicznej fali o częstości 5-6 Hz przypominającej wyładowania padaczkowe. W celu lepszej detekcji tego artefaktu wskazane jest rejestrowanie czynności EMG. | Drżenie kończyn może być spowodowane chorobą (np. Parkinsona) lub długotrwałym siedzeniem w mało komfortowej pozycji. Ruchy kończyn będą wywoływały także ledwo zauważalne ruchy głowy. W sytuacji, gdy badana osoba cierpi na chorobę Parkinsona, drżenia kończyn prowadzą do powstania rytmicznej fali o częstości 5-6 Hz przypominającej wyładowania padaczkowe. W celu lepszej detekcji tego artefaktu wskazane jest rejestrowanie czynności EMG. | ||
− | |||
− | |||
− | |||
===Artefakty związane z ruchem badanej osoby.=== | ===Artefakty związane z ruchem badanej osoby.=== | ||
Linia 244: | Linia 240: | ||
</ul> | </ul> | ||
− | == | + | ==Zadanie 1: Rejestracja EEG z artefaktami == |
=== Przypomnij sobie:=== | === Przypomnij sobie:=== | ||
Linia 254: | Linia 250: | ||
<ol> | <ol> | ||
− | <li> Dokonaj przynajmniej | + | <li> Dokonaj przynajmniej 15-minutowego zapisu EEG w systemie 10-20, jako elektrody referencyjne wybierz elektrody uszne. Jednocześnie wraz z rejestracją EEG dokonaj pomiaru sygnału EKG z [[Pracownia_Sygnałów_Biologicznych/Zajecia_2_4|odprowadzenia I Einthovena]], EMG z szyi oraz elektrookulogamu. W trakcie pomiaru, w wybranych chwilach czasu wykonaj: |
<ul> | <ul> | ||
<li> mrugnięcie, | <li> mrugnięcie, | ||
− | |||
<li> żucie, | <li> żucie, | ||
− | |||
<li> ruch oczu w prawo, | <li> ruch oczu w prawo, | ||
<li> ruch oczu w lewo, | <li> ruch oczu w lewo, | ||
Linia 269: | Linia 263: | ||
</ul> | </ul> | ||
− | Wszystkie powyższe czynności powinny być odseparowane od siebie w czasie. Osoba biorąca razem z Tobą udział w eksperymencie powinna dokładnie zanotować moment wykonywania przez Ciebie kolejnych ruchów. | + | Wszystkie powyższe czynności powinny być odseparowane od siebie w czasie. Osoba biorąca razem z Tobą udział w eksperymencie powinna dokładnie zanotować moment wykonywania przez Ciebie kolejnych ruchów. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<li> Zarejestruj 10 minut sygnału EEG, w trakcie których badana osoba będzie siedziała z otwartymi oczami oraz kolejne 10 minut w stanie czuwania z zamkniętymi oczami. Sygnał ten będzie potrzebny w czasie kolejnych zajęć, więc zapisz jego kopię zapasową. | <li> Zarejestruj 10 minut sygnału EEG, w trakcie których badana osoba będzie siedziała z otwartymi oczami oraz kolejne 10 minut w stanie czuwania z zamkniętymi oczami. Sygnał ten będzie potrzebny w czasie kolejnych zajęć, więc zapisz jego kopię zapasową. | ||
Linia 285: | Linia 271: | ||
===Praca z sygnałami=== | ===Praca z sygnałami=== | ||
<ol> | <ol> | ||
− | <li>Po zakończeniu rejestracji otwórz w SVAROGu z pliku zapisany sygnał. Obejrzyj dokładnie zarówno 2-minutowe odcinki sygnału pomiędzy wykonywanymi ruchami jak i w momencie wykonywania ruchów. | + | <li>Po zakończeniu rejestracji otwórz w SVAROGu z pliku zapisany sygnał. Obejrzyj dokładnie zarówno 2-minutowe odcinki sygnału pomiędzy wykonywanymi ruchami jak i w momencie wykonywania ruchów. Przygotuj w SVAROGU oznaczenia artefaktów z listy powyżej i oznacz zebrane zestawy danych odpowiednimi tagami. |
− | + | ||
<!-- | <!-- | ||
<li> Zastosuj transformację ICA. Przyjrzyj się otrzymanym komponentom, ich przebiegom czasowym, widmom mocy i topografiom. | <li> Zastosuj transformację ICA. Przyjrzyj się otrzymanym komponentom, ich przebiegom czasowym, widmom mocy i topografiom. | ||
--> | --> | ||
− | + | ||
</ol> | </ol> | ||
+ | |||
===ICA (ćwiczenie dodatkowe)=== | ===ICA (ćwiczenie dodatkowe)=== | ||
Linia 326: | Linia 313: | ||
regułach uczenia. | regułach uczenia. | ||
− | Procedura usuwania artefaktów polega na zerowaniu komponentów, które zidentyfikujemy -- na przykład na podstawie kształtu, widma i rozkładu przestrzennego -- i odtwarzaniu sygnału z pominięciem tych komponentów. Procedura jest zaimplementowania w programie Svarog, którego aktualną wersję można ściągnąć stąd: | + | Procedura usuwania artefaktów polega na zerowaniu komponentów, które zidentyfikujemy -- na przykład na podstawie kształtu, widma i rozkładu przestrzennego -- i odtwarzaniu sygnału z pominięciem tych komponentów. Procedura jest zaimplementowania w programie Svarog, którego aktualną wersję można ściągnąć stąd: https://braintech.pl/software/svarog-streamer/ |
Aktualna wersja na dzień 08:40, 24 wrz 2024
Pracownia EEG / EEG spoczynkowe, artefakty
Spis treści
Podstawowe grafoelementy zapisu EEG i ich główne cechy
Rytm δ
Przebieg rytmu delta zaprezentowano na rysunku 1. Jest to wysokoamplitudowa aktywność o niskiej częstości (0-4 Hz) i czasie trwania co najmniej 1/4 s. Do celów praktycznych przyjęto, że dolną granicą częstości jest 0,5 Hz. Pojawiające się podczas głębokiego snu fale delta o amplitudzie przekraczającej 75 μV nazywa się falami wolnymi (ang. slow wave activity, SWA). Występowanie SWA spowodowane jest wysoką synchronizacją neuronów kory (większą synchronizację spotyka się tylko podczas ataku epilepsji). Fale delta rejestruje się także podczas głębokiej medytacji, u małych dzieci i w przypadku pewnego rodzaju uszkodzeń mózgu.
Rytm θ
Rytmem teta (ang. theta) (rys. 2) nazywamy aktywność w paśmie częstości od 3 do 7 Hz i rozpiętości (ang. peak-to-peak) rzędu kilkudziesięciu μV. Charakterystyczne fale teta występują np. w okresie snu płytkiego — przypuszcza się że w tym czasie następuje przyswajanie i utrwalanie uczonych treści. Fale teta są najczęściej występującymi falami mózgowymi podczas medytacji, transu, hipnozy, intensywnego marzenia, intensywnych emocji. Odmienny rodzaj fal teta jest związany z aktywnością poznawczą, kojarzeniem (w szczególności uwagą), a także procesami pamięciowymi (tzw. rytm FMΘ — frontal midline theta). Jest on obserwowany głównie w przyśrodkowej części przedniej części mózgu.
Cechy charakterystyczne:
- Rytmiczny przebieg o częstości 3-7 Hz.
- Najwyższa amplituda w stanie czuwania w okolicach linii środkowej i obszarach skroniowych.
- Rozkład amplitudy symetryczny na półkulach określonych przez płaszczyznę strzałkową
Cechy patologiczne:
- Asymetryczny rozkład amplitudy (dominacja rytmu na jednej półkuli) bądź też jego występowanie w zapisie tylko na jednym odprowadzeniu może świadczyć o patologii.
Rytm α
Fala alfa to jedna z najwcześniej zaobserwowanych struktur (grafoelementów) EEG. Reprezentuje ona rytmiczną aktywność kory mózgowej w paśmie 8-12 Hz. Występowanie rytmu alfa przypisuje się stanowi relaksu z zamkniętymi oczami. Fale alfa najlepiej widoczne są w odprowadzeniach potylicznych, czyli z okolic kory odpowiadającej za przetwarzanie informacji wzrokowych. Rytm o częstości w paśmie alfa rejestrowany w okolicach kory motorycznej nazywany jest rytmem mi (ang. mu), ze względu na kształt fali przypominającej literę μ. Wykazuje on istotny zanik w momencie wykonywania ruchu przez człowieka lub tylko zamierzenia jego wykonania.
Rytm alfa fundamentalne znaczenie w analizie EEG snu. Mimo, że nie występuje podczas właściwego snu to świadczy o „przedsennym” czuwaniu pacjenta, a jej zanik oznacza przejście ze stanu czuwania do płytkiego snu. Fale alfa zanikają także podczas wysiłku umysłowego, np. wykonywaniu działań matematycznych albo przy otwarciu oczu i zadziałaniu na nie światła. Blokowanie rytmu alfa jest wyrazem desynchronizacji aktywności neuronów, zachodzącej pod wpływem koncentracji umysłowej lub stymulacji narządów zmysłów. Przebieg fali alfa zaprezentowano na rysunku 3 i rysunku 4
Cechy charakterystyczne:
- Podstawowy rytm prawidłowego zapisu EEG u dorosłej osoby.
- Quasi harmoniczny przebieg o częstości 7-13 Hz.
- Wzrost amplitudy po zamknięciu oczu, w stanie relaksu czy czuwania z zamkniętymi oczami.
- Zanika po otwarciu oczu.
- Fale alfa najlepiej widoczne są w odprowadzeniach tylnych, czyli z okolic części kory odpowiadającej za przetwarzanie informacji wzrokowych. Czasem jednak może propagować się w kierunku obszarów tylno skroniowych i ciemieniowych.
- Występuje mniej lub bardziej symetrycznie względem płaszczyzny strzałkowej, zwykle jednak ma większą amplitudę nad półkulą dominującą. Zbyt duża asymetria amplitudy rytmu alfa lub też jego brak po jednej stronie zawsze świadczy o jakiejś patologii. Często jednak przyczyną takiej asymetrii jest niewłaściwe umieszczenie elektrod na głowie bądź budowa anatomiczna czaszki.
Cechy patologiczne:
- Częstość rytmu ulega zmniejszeniu pod wpływem takich czynników jak: choroby metaboliczne, wczesne fazy otępienia, leki.
Rytm μ
Cechy charakterystyczne:
- Rytmiczny przebieg o częstości od 7-11 Hz, z uwagi na co często mylony z rytmem alfa.
- Wyraźny przebieg, kształtem przypominający grecką literę μ.
- Zanika w trakcie wykonywania ruchu bądź nawet pod wpływem samego jego wyobrażenia.
Rytm β
Fale beta (rys. 5) to niskoamplitudowe oscylacje o częstości w przedziale 13-30 Hz. W paśmie beta wyróżnia się następujące przedziały: wolne fale beta (12-15 Hz), właściwe, średnie pasmo beta (15-18 Hz) i szybkie fale beta, o częstości powyżej 19 Hz. Ta mało zsynchronizowana praca neuronów charakteryzuje zwykłą codzienną aktywność kory mózgowej u człowieka, percepcję zmysłową i pracę umysłową. Specyficzna aktywność beta towarzyszy również stanom po zażyciu niektórych leków. Fale beta zazwyczaj występują w okolicy czołowej. Obrazują one zaangażowanie kory mózgowej w aktywność poznawczą. Fale beta o małej amplitudzie występują podczas koncentracji uwagi, gdy mózg nastawiony jest na świadomy odbiór bodźców zewnętrznych za pomocą wszystkich zmysłów. Cechy charakterystyczne:
- Rytmiczny przebieg o częstości od 13 do 30 Hz.
- Amplituda nie zmienia się pod wpływem otwarcia lub zamknięcia oczu.
- Najwyższa amplituda w okolicach czołowo-centralnych.
- Asymetryczny zanik rytmu w trakcie wykonywania ruchu lub nawet jego wyobrażenia. Zanik obserwowalny jest w zapisie EEG z elektrod umieszczonych nad obszarami mózgu odpowiedzialnymi za kończynę wykonującą ruch (kontralatralnie czyli po przeciwnej stronie niż kończyna).
Fale γ
Fale gamma (rys. 6) to fale mózgowe o częstości w okolicach 40 Hz (30-80 Hz). Aktywność w paśmie 80-200 Hz określa się natomiast jako wysokoczęstotliwościową (ang. high) gammę. Rytm gamma towarzyszy aktywności ruchowej i funkcjom motorycznym. Fale gamma związane są też z wyższymi procesami poznawczymi, m. in. percepcją sensoryczną, pamięcią. Przypuszcza się, że rytm gamma o częstotliwości około 40 Hz ma związek ze świadomością percepcyjną (dotyczącą wrażeń zmysłowych i ich postrzegania) oraz związany jest z integracją poszczególnych modalności zmysłowych w jeden spostrzegany obiekt. Aktywność high-gamma występuje podczas aktywacji kory mózgowej, zarówno przez bodźce zewnętrzne (np. dotykowe, wzrokowe), jak i wewnętrzne (przygotowanie ruchu, mowa). Fale o częstościach 100-250 Hz nazywane są ripples. Rejestruje się je w sygnale z implantowanych mikroelektrod, a wysoko częstościową aktywność fast ripples (250-600 Hz) w szczególności u pacjentów z epilepsją, w obszarze ogniska epileptycznego.
Wrzeciona snu
Wrzeciona snu (ang. sleep spindles) (rys. 9) to charakterystyczne struktury zaobserwowane już niemal od samych początków historii pomiarów EEG. Występują podczas umiarkowanie głębokiego snu. Wrzecionami snu nazywamy aktywność o częstości 11-15 Hz i czasie trwania 0,5-1,5 s. Obwiednia tych krótkich salw dość szybkiej aktywności o niewielkiej amplitudzie przypomina kształt wrzeciona. Wrzeciona pojawiają się we wszystkich odprowadzeniach, z tym, że ich amplituda i częstość może się nieznacznie zmieniać przy przejściu od przodu do tyłu głowy (od wrzecion „wolnych” po „szybkie”). Wrzeciona snu mogą występować w parach z kompleksami K.
Kompleksy K
Kompleksy K (ang. K-complexes, w Polsce często nazywane zespołami K), (rys. %i 9) mogą pojawiać się pojedynczo lub też w serii po dwa podczas umiarkowanie głębokiego snu. Definiuje się je jako dwufazową (ostry spadek poprzedzony dodatnim maksimum), wysokonapięciową (to największe maksimum strefy), nisko częstotliwościową falę związaną z wrzecionami snu, przy czym jej czas trwania powinien przekraczać 0,5 s. Obecnie wymaga się aby struktury te miały częstość 1-4 cykli/s, amplitudę co najmniej dwa razy większą od średniej amplitudy tła i czas trwania 0,5-2 s. Amplituda kompleksu K jest zazwyczaj największa na czubku głowy. Kompleksy K mogą podczas snu występować spontanicznie lub też w odpowiedzi na bodźce.
Fale piłokształtne
Fale piłokształtne (ang. sawtooth waves) pojawiają się w EEG w czasie snu w fazie REM, są to wierzchołkowe, ujemne fale o umiarkowanej częstości i amplitudzie. Z definicji falą piłokształtną nazywa się pojedyncze lub zgrupowane po kilka fale o częstości 6-10 Hz, amplitudzie rzędu kilkudziesięciu μV i wyraźnym kształcie zębów piły.
Wierzchołkowe fale ostre
Wierzchołkowe fale ostre (ang. vertex sharp waves) występują pod koniec okresu płytkiego snu. Aktywnością tą określa się ostry potencjał, maksymalny w okolicy wierzchołkowej, ujemny w stosunku do innych pól, o amplitudzie zmiennej, rozpiętości często dochodzącej do 250 μV.
Iglice
Iglice (ang. spikes), to termin ograniczony do padaczkopodobnych wyładowań, obserwowanych także w zapisie międzynapadowym EEG. Są to grafoelementy wyraźnie wyróżniające się z czynności podstawowej, z ostrym wierzchołkiem i często następującą po nim falą wolną. Czas trwania iglicy wynosi zazwyczaj od 20 do 70 milisekund, a amplituda co najmniej dwa razy większa o od amplitudy tła w obrębie około 5 sekund.
Artefakty
Niewłaściwie umocowanie elektrod
Jednym z bardzo ważnych etapów przed wykonaniem rejestracji czynności elektrycznej mózgu jest umieszczenie na powierzchni głowy elektrod pomiarowych. Elektrody te powinny być rozlokowane zgodnie z wybranym uprzednio standardem (np. 10-20, czy 10-10). Lokalizacja elektrod w badaniu EEG była tematem IX spotkania na Pracowni Sygnałów Bioelektrycznych i nie będzie omawiana już w bieżących materiałach. W tym miejscu zapoznamy się bliżej z konsekwencjami nieprawidłowego umocowania elektrod na głowie badanej osoby. Jak wiemy, poszczególnym obszarom kory mózgowej można przypisać aktywność związaną z określoną czynnością behawioralną, np. w trakcie czuwania z zamkniętymi oczami, w płatach potylicznych powstaje rytmiczna czynność o częstości 7-13 Hz. Z kolei w trakcie planowania bądź wykonywania ruchu zachodzą zmiany w czynności elektrycznej mózgu w obszarach bruzdy Rolanda, nad którą zlokalizowane są miejsca przyłożenia elektrod C3, Cz i C4. Czynność elektryczna mózgu jest bardzo słaba (zwykle wynosi od kliku do kilkudziesięciu μV) i szybko zanika wraz z odległością. Elektroda umieszczona w niewłaściwym miejscu (np. przesunięta o 1 cm względem prawidłowego położenia), nie będzie rejestrować interesującej nas czynności elektrycznej mózgu. Kolejna bardzo istotna kwestia, to przygotowanie skóry w miejscu przyłożenia elektrody. Najbardziej zewnętrzna cześć skóry — naskórek, jest martwy, zrogowaciały i pokryty tłuszczem. Powoduje to, iż opór elektryczny skóry jest bardzo duży (rzędu MΩ) i uniemożliwia rejestrację EEG. Pomiar tego sygnału nie może bowiem odbywać się na drodze „radiowej”, to jest np. za pomocą elektrody umieszczone w pewnej odległości od powierzchni głowy. Wynika to z warunków brzegowych dla pola elektrycznego na granicy ośrodka przewodzącego i próżni.
Podsumowując, rejestracja sygnału EEG wymaga dobrego kontaktu elektrod ze skórą pacjenta, umożliwiającego przewodzenie prądów elektrycznych, będących wynikiem elektrycznej aktywności mózgu. W szczególności dotyczy to tzw. elektrody GND oraz referencyjnej. Niewłaściwe umocowanie tych elektrod na powierzchni głowy będzie skutkować zakłóceniem pomiaru na wszystkich elektrodach. Odpowiednie schematy połączeń elektrod ze wzmacniaczem EEG znajdują się w skrypcie o EEG. Brak dobrego kontaktu powoduje następujące efekty uboczne:
- Tłumienie sygnału (patrz wzór na zajęciach z Pracowni Sygnałów Bioelektrycznych).
- Zakłócanie pomiaru EEG przez pole elektryczne od sieci zasilającej, widoczne w postaci harmonicznego sygnału o częstości 50 Hz i relatywnie wysokiej amplitudzie w porównaniu z amplitudą sygnału EEG.
- „Trzaskanie elektrod”. Polega ono na krótkotrwałym braku kontaktu części elektrody ze skórą. Powoduje to nagłą zmianę potencjału, kształtem przypominającego wyładowania iglicowe, które pełnią ważną rolę w diagnostyce padaczki. Cechą odróżniającą skoki potencjału związane z patologią czynności elektrycznej mózgu, a nieszczelnym kontaktem elektrody ze skórą jest fakt, iż wyładowania związane z niewłaściwym umocowaniem elektrody są widoczne na:
- jednym (uszkodzonym) odprowadzeniu w przypadku odprowadzeń referencyjnych jednobiegunowych;
- dwóch elektrodach w przypadku odprowadzeń dwubiegunowych.
Jeśli zmiana kontaktu ze skórą nie ma gwałtownego charakteru, niewłaściwie zamocowana elektroda może być źródłem powstawania zmian potencjału w zakresie pasm EEG, trudno odróżnialnych od prawdziwej czynności elektrycznej. Jedyną cechą różnicującą ten artefakt od sygnału EEG jest fakt jego występowania na pojedynczej elektrodzie, w przypadku odprowadzeń jednobiegunowych i dwóch sąsiednich kanałach, będących lustrzanymi odbiciami w przypadku odprowadzeń dwubiegunowych.
Pocenie się
Pocenie się badanej osoby prowadzi do:
- Rozpuszczania klejów wodozmywalnych, za pomocą których elektrody przyczepiane są do powierzchni głowy. Pogarsza to kontakt elektrody ze skórą.
- Tworzenie zwarć pomiędzy elektrodami. Pot składający głównie z wody, soli i innych związków chemicznych dobrze przewodzi prąd. W efekcie następuje redukcja impedancji pomiędzy elektrodami i zmiana wartości mierzonego potencjału.
Wymienione powyżej zjawiska prowadzą do powstania w zapisie EEG bardzo wolnych, trwających kilka sekund fal.
Mruganie
Bardzo silny artefakt, trudny do wyeliminowania z zapisu EEG, mogący się objawić na wszystkich elektrodach, w szczególności zaś widoczny na odprowadzeniach przedczołowych i czołowych. Źródłem tego artefaktu jest występująca pomiędzy rogówką a siatkówką różnica potencjałów (sięgająca wartości kilku miliwotlów) oraz czynność elektryczna siatkówki o amplitudzie kilku mikrowoltów. W trakcie mrugania gałki oczne skręcają nieznacznie ku górze (tzw. zjawisko Bella) powodując nagły wzrost potencjału elektrycznego. Rogówka posiada potencjał dodatni względem siatkówki, w związku z czym na odprowadzeniach przedczołowych i czołowych obserwuje się wychylenie potencjału w kierunku dodatnich wartości względem potencjału na innych elektrodach. Zwiększony potencjał na elektrodach czołowych utrzymuje się tak długo, jak skręcone ku górze pozostają gałki oczne. Powrót gałek do pozycji spoczynkowej powoduje redukcję potencjału na przednich elektrodach. Zmiana sygnału związana z artefaktem od gałki ocznej ma zatem charakter „schodka”, jednakże filtry w które wyposażony jest wzmacniacz EEG powodują rozmycie i wygładzenie tego zaburzenia, które przyjmuje łatwo rozpoznawalny kształt. Artefakt ten jest na tyle silny, iż pomimo losowego występowania, uśrednianie sygnałów EEG mierzonych w trakcie powtarzania tego samego paradygmatu doświadczalnego nie redukuje jego amplitudy w sposób zadowalający. Środkami mogącymi zmniejszyć jego występowanie jest przewidzenie w trakcie eksperymentu przerw na „wymruganie”, używanie środków nawilżających oczy (najlepiej w postaci żeli, które długo pozostają na gałce), lekkie zmrużenie oczu.
Ruchy gałek ocznych na boki
Źródło powstawania tych artefaktów jest takie samo jak w przypadku mrugania. W wyniku różnic potencjałów pomiędzy siatkówką a rogówką, zmiana orientacji gałki ocznej w przestrzeni powoduje zmianę pola elektrycznego i jego potencjału, który mierzymy. W przypadku skręcenia oczami w prawą stronę, nastąpi wzrost mierzonego potencjału na elektrodzie skroniowej prawej — F8 (dodatnio naładowana część gałki przybliża się do tej elektrody) i jego spadek na elektrodzie leżącej po przeciwnej stronie głowy — F7 (dodatnio naładowana część gałki odsuwa się do tej elektrody). Dzięki temu artefakt ten jest łatwo rozpoznawalny. U osób z oczopląsem artefakt ten występuje rytmicznie z częstością oczopląsu. Należy również pamiętać, że ruchy gałek ocznych są sterowane mięśniami, w związku z czym nagłe i silne ruchu gałek na boki będą powodowały występowanie wyładowań iglicowych związanych z czynnością mięśni. Amplituda tych wyładowań osiągnie największą wartość na elektrodach F8 i F7.
Elektryczna Czynność Mięśni — EMG
Na głowie człowieka znajdują się mięśnie, bądź przyczepy mięśni odpowiedzialnych głównie za mimikę twarzy, ruchy gałek ocznych czy ruchy szczęki. W związku z powyższym artefakty mięśniowe najsilniej będą rejestrowane przez elektrody czołowe oraz skroniowe (przednie i środkowe). Artefakty te są znaczne silniejsze niż zapis EEG (mogą dochodzić do kilku mV), zaś ich widmo w niskich częstościach pokrywa się z pasmem beta i gamma w EEG. Powstawaniu artefaktów EMG sprzyja: niewłaściwe oświetlenie laboratorium (co powoduje mrużenie oczu), niewygodna dla pacjenta pozycja — brak oparcia dla głowy, brak oparcia dla rąk i nóg, wykonywane testy wymagające uwagi i koncentracji. W tym ostatnim przypadku, w trakcie rozwiązywania takiego testu, cześć spośród badanych osób ma tendencję do marszczenia czoła, czy mrużenia oczu.
Czynność elektryczna serca
Artefakt ten pojawia się najczęściej rytmicznie wraz z czynnością elektryczną serca i przyjmuje charakterystyczny dla niego kształt. Zdarza się jednak, że nie każdy kolejny cykl pracy serca zostanie zmierzony przez elektrody EEG. Wtedy artefakt ten może być pomylony z wyładowaniami iglicowymi. Najlepszą metodą detekcji tego artefaktu jest jednoczesny pomiar EEG i EKG. Zakłócenie związane z EKG objawia się najsilniej na elektrodzie, które została umieszczona tuż nad jakąś tętniczką. Często to ma miejsce w przypadku gdy jako elektrodę referencyjną wybrano elektrodę umieszczoną na wyrostku sutkowatym (za uszami), gdzie u wielu osób przebiega właśnie mała tętniczka. Sygnały z kanałów referencyjnych odejmowane są od sygnałów zarejestrowanych od pozostałych kanałów co będzie w oczywisty sposób prowadzić do „rozpowszechniania się” artefaktu EKG po wszystkich elektrodach. O ile to możliwe, należy zmienić nieznacznie pozycję elektrody, tak aby nie znajdowała się ona nad tętniczką.
Żucie, ruchy języka
Artefakt związany z żuciem to głównie potencjały od czynności elektrycznej mięśni o częstości występowania skorelowanej z rytmicznie powtarzającym się ruchem szczęk.
Drżenie kończyn
Drżenie kończyn może być spowodowane chorobą (np. Parkinsona) lub długotrwałym siedzeniem w mało komfortowej pozycji. Ruchy kończyn będą wywoływały także ledwo zauważalne ruchy głowy. W sytuacji, gdy badana osoba cierpi na chorobę Parkinsona, drżenia kończyn prowadzą do powstania rytmicznej fali o częstości 5-6 Hz przypominającej wyładowania padaczkowe. W celu lepszej detekcji tego artefaktu wskazane jest rejestrowanie czynności EMG.
Artefakty związane z ruchem badanej osoby.
Wywołane są dowolnymi ruchami głowy i ciała badanej osoby i związaną z nimi czynnością elektryczną mięśni. Powstałe potencjały są szerokopasmowe i mają znaczne amplitudy. Ruchy badanej osoby prowadzą do:
- ruchu elektrod, a w związku tym pogorszenia ich kontaktu ze skór, a nawet oderwania elektrod od skóry;
- zmiany strumienia pola elektromagnetycznego przechodzącego przez pętle utworzone przez elektrody i wzmacniacz. Zgodnie z prawem indukcji Faradaya, zmiana strumienia w czasie spowoduje powstaje siły elektromotorycznej.
Redukcja artefaktów
Kilka rad umożliwiających redukcję artefaktów, bądź ich lepsze rozpoznanie:
- zadbać o położenie wzmacniacza EEG z dala od innych urządzeń i kabli. Umieścić go na podkładce z tworzywa;
- zadbać o komfortową pozycję dla pacjenta;
- mierzyć czynność EKG, EMG i elektrookulogram wraz z EEG;
- sporządzać notatki na temat zachowania się pacjenta (jeśli mamy możliwość obserwowania go) — kiedy się poruszał, czy ktoś do niego podszedł np. celem poprawienia jakiegoś elementu układu eksperymentalnego.
Zadanie 1: Rejestracja EEG z artefaktami
Przypomnij sobie:
- procedurę zakładania czepka na głowie
- przygotowanie skóry głowy
- techniczne uwagi dotyczące pomiaru EEG.
Rejestracja
- Dokonaj przynajmniej 15-minutowego zapisu EEG w systemie 10-20, jako elektrody referencyjne wybierz elektrody uszne. Jednocześnie wraz z rejestracją EEG dokonaj pomiaru sygnału EKG z odprowadzenia I Einthovena, EMG z szyi oraz elektrookulogamu. W trakcie pomiaru, w wybranych chwilach czasu wykonaj:
- mrugnięcie,
- żucie,
- ruch oczu w prawo,
- ruch oczu w lewo,
- zmarszczenie czoła,
- zaciśnięcie zębów,
- napięcie mięśni szyi,
- ruch głową
Wszystkie powyższe czynności powinny być odseparowane od siebie w czasie. Osoba biorąca razem z Tobą udział w eksperymencie powinna dokładnie zanotować moment wykonywania przez Ciebie kolejnych ruchów.
- Zarejestruj 10 minut sygnału EEG, w trakcie których badana osoba będzie siedziała z otwartymi oczami oraz kolejne 10 minut w stanie czuwania z zamkniętymi oczami. Sygnał ten będzie potrzebny w czasie kolejnych zajęć, więc zapisz jego kopię zapasową.
Praca z sygnałami
- Po zakończeniu rejestracji otwórz w SVAROGu z pliku zapisany sygnał. Obejrzyj dokładnie zarówno 2-minutowe odcinki sygnału pomiędzy wykonywanymi ruchami jak i w momencie wykonywania ruchów. Przygotuj w SVAROGU oznaczenia artefaktów z listy powyżej i oznacz zebrane zestawy danych odpowiednimi tagami.
ICA (ćwiczenie dodatkowe)
Popularna w ostatnich latach metoda "czyszczenia" sygnału z artefaktów opiera się na analizie składowych niezależnych.
Analiza składowych niezależnych (ang. Independent Components Analysis, ICA) to jedno z określeń dla metod rozwiązywania problemu tzw. ślepej separacji źródeł (blind source separation, BSS). Przyjęty model zakłada, że mamy do czynienia z następującą sytuacją: dane którymi dysponujemy ([math]\vec{x}[/math] — np. zapisy z kilku mikrofonów) są liniową mieszaniną kilku statystycznie niezależnych sygnałów ([math]\vec{s}[/math] — np. głosy kilku mówiących jednocześnie osób, tzw. cocktail party problem):
[math] \vec{x} = A \vec{s} [/math]
[math]A[/math] zwiemy macierzą mieszającą, a rozwiązania szukamy w postaci macierzy separującej [math]B[/math], takiej, że wektor sygnałów
[math] \vec{y}=B\vec{x} [/math]
jest możliwie bliski (nieznanym) sygnałom [math]\vec{s}[/math]. Wymóg niezależności statystycznej elementów [math]\vec{y}[/math] wymaga uwzględnienia statystyk rzędów wyższych niż 2, czyli korelacji (używanych w PCA). Przetwarzanie wstępne polega często na wyzerowaniu statystyk do rzędu 2, czy odjęciu średniej i obrocie diagonalizującym macierz kowariancji (zwykle PCA). Uzyskanie w prosty sposób dekorelacji ułatwia działanie procedur realizujących dalsze wymagania niezależności. Realizowane są one zwykle z pomocą sztucznych sieci neuronowych o specjalnie dobieranych regułach uczenia.
Procedura usuwania artefaktów polega na zerowaniu komponentów, które zidentyfikujemy -- na przykład na podstawie kształtu, widma i rozkładu przestrzennego -- i odtwarzaniu sygnału z pominięciem tych komponentów. Procedura jest zaimplementowania w programie Svarog, którego aktualną wersję można ściągnąć stąd: https://braintech.pl/software/svarog-streamer/