WnioskowanieStatystyczne/Statystyki i estymatory: Różnice pomiędzy wersjami
Linia 178: | Linia 178: | ||
= \frac{1}{n} \left[ n \sigma^{2}(x)-n\left(\frac{1}{n}\sigma^{2}(x)\right)\right] | = \frac{1}{n} \left[ n \sigma^{2}(x)-n\left(\frac{1}{n}\sigma^{2}(x)\right)\right] | ||
</math> | </math> | ||
+ | |||
<math> | <math> | ||
− | =\frac{n-1}{n}\sigma ^{2}(x) | + | =\frac{n-1}{n}\sigma ^{2}(x) |
</math> | </math> | ||
− | czyli nie jest dla każdej wielkości próby <math>n</math> | + | czyli nie jest dla każdej wielkości próby <math>n</math> wartość oczekiwana tego estymatora wyniesie <math>\sigma^2(x)</math>. Tak więc <math>s_o^2</math> jest estymatorem obciążonym. |
− | + | ||
+ | |||
+ | W tej sytuacji, jako nieobciążony estymator wariancji możemy zaproponować | ||
<equation id="eq:93"> | <equation id="eq:93"> | ||
<math> | <math> |
Wersja z 14:52, 18 mar 2021
Wnioskowanie_Statystyczne_-_wykład
Statystyki i estymatory
Funkcję [math]S(x_{1},x_{2},...x_{n})[/math] określoną na elementach próby [math]\{x_i\}[/math] zwiemy statystyką. Obliczane w praktyce statystyki służą weryfikacji hipotez statystycznych (zwiemy je wtedy statystykami testowymi — tym zajmiemy się w następnym rozdziale) lub estymacji (szacowaniu) parametrów rozkładu prawdopodobieństwa w populacji zmiennej [math]x[/math], z której pobierana jest próba. W tym drugim przypadku zwiemy je estymatorami. Na przykład wartość średnia próby
może być estymatorem wartości oczekiwanej populacji [math]\mu=E(x)[/math].
Estymator zwiemy nieobciążonym, jeśli dla każdej wielkości próby [math]n[/math] jego wartość oczekiwana jest równa wartości estymowanego parametru (oznaczmy go np. [math]\beta[/math]):
[math] \forall n \ E(S(x_{1}...x_{n}))=\beta. [/math]
Estymator zwiemy zgodnym, jeśli przy wielkości próby dążącej do nieskończoności jego wariancja dąży do zera:
[math] \underset{n\rightarrow \infty }{\lim }\sigma (S(x_{1}...x_{n}))=0. [/math]
Estymator wartości oczekiwanej
[math] \mu=E(x)=\overset{n}{\underset{i=1}{\sum }}x_{i}P(X=x_{i}) [/math]
[math] \mu=E(x)=\underset{-\infty }{\overset{\infty }{\int }}x p(x)dx. [/math]
Zaproponowany powyżej estymator wartości oczekiwanej
[math] \overline{x}=\frac{1}{n}\underset{i=1}{\overset{n}{\sum }}x_{i} [/math]
jest nieobciążony i zgodny.
Dowód:
[math] E(\overline{x})=E\left(\frac{1}{n}\underset{i=1}{\overset{n}{\sum }}x_{i}\right)= \frac{1}{n}\underset{i=1}{\overset{n}{\sum }}E(x_{i}) =\frac{1}{n}\underset{i=1}{\overset{n}{\sum }}\mu =\frac{1}{n}n\mu =\mu [/math]
[math] \sigma ^{2}\left( \overline{x}\right) = E \left( \left( \overline{x}-E(\overline{x})\right)^{2}\right) = E\left(\left(\frac{1}{n}\underset{i=1}{\overset{n}{\sum }}x_{i}- \frac{1}{n}\underset{i=1}{\overset{n}{\sum }}\mu \right)^{2}\right) = [/math]
[math] =\frac{1}{n^{2}}E\left(\left(\underset{i=1}{\overset{n}{\sum }}(x_{i}-\mu )\right)^{2}\right) [/math]
Jeśli elementy próby są niezależne, to
gdzie [math]\delta_{ij}[/math] oznacza deltę Kroneckera ([math]\delta_{ij}=1\ \textrm{ dla }\ i=j, \delta_{ij}=0\ \textrm{ dla }\ i\neq j[/math]), czyli:
[math]\sigma ^{2}\left( \overline{x}\right) =\frac{1}{n^{2}}E\left(\underset{i=1}{\overset{n}{\sum }}(x_{i}-\mu )^{2}\right) =\frac{1}{n^{2}}\left(\underset{i=1}{\overset{n}{\sum }}E(x_{i}-\mu )^{2}\right) = \frac{1}{n^{2}}\underset{i=1}{\overset{n}{ \sum }}\sigma ^{2}(x_i) [/math]
Ponadto, jeśli elementy próby pochodzą z tego samego rozkładu, to
[math]\sigma ^{2}(x_{i})=\sigma^{2}(x)[/math], czyli
Estymator wariancji
przypomnijmy wzory na wariancję dla przypadku, kiedy znany jest rozkład:
[math]
\sigma ^{2}(x)=E((x-\mu)^{2})=\overset{n}{\underset{i=1}{\sum }}
P(X=x_{i})(x_{i}-\mu)^{2}
[/math]
[math] \sigma ^2(x)=E((x-\mu)^{2})=\underset{-\infty }{\overset{\infty }{ \int }}(x-\mu)^{2} p(x)dx [/math]
Spróbujmy skonstruować estymator wariancji z próby jako [math] s_o^{2}=\frac{1}{n}
\underset{i=1}{\overset{n}{\sum }}(x_{i}-\overline{x})^{2}.[/math]
Jego wartość oczekiwana wyniesie
[math] E\left( s_o^{2}\right) = \frac{1}{n} E\left(\sum\limits_{i=1}^{n}(x_{i}-\overline{x})^{2}\right) [/math]
[math] = \frac{1}{n} E\left( \sum\limits_{i=1}^n (x_i-\mu -\overline{x}+\mu)^2 \right) [/math]
[math] = \frac{1}{n} E\left( \sum\limits_{i=1}^{n} \left[ (x_{i}-\mu)^2 + (\overline{x}-\mu)^2 - 2 (x_{i}-\mu) (\overline{x}-\mu) \right] \right) [/math]
[math] = \frac{1}{n} E\left( \sum\limits_{i=1}^{n} \left[(x_i-\mu)^2 - (\overline{x}-\mu )^{2} \right] \right) [/math]
[math]
= \frac{1}{n} \left( \sum\limits_{i=1}^{n} E (x_i-\mu)^2 - n E (\overline{x}-\mu )^{2} \right)
[/math]
[math]
= \frac{1}{n} \left[ \sum\limits_{i=1}^{n} \sigma^{2}(x_i)-n\left(\sigma^{2}(\overline{x})\right)\right]
[/math]
[math]
= \frac{1}{n} \left[ n \sigma^{2}(x)-n\left(\frac{1}{n}\sigma^{2}(x)\right)\right]
[/math]
[math]
=\frac{n-1}{n}\sigma ^{2}(x)
[/math]
czyli nie jest dla każdej wielkości próby [math]n[/math] wartość oczekiwana tego estymatora wyniesie [math]\sigma^2(x)[/math]. Tak więc [math]s_o^2[/math] jest estymatorem obciążonym.
W tej sytuacji, jako nieobciążony estymator wariancji możemy zaproponować
Podstawiając ten estymator wariancji do wyprowadzonego powyżej wzoru na wariancję wartości średniej (3) w miejsce [math]\sigma^2[/math], dostajemy wzór na estymator wariancji wartości średniej próby:
Pierwiastek tej wielkości
[math] s_{\overline{x}} = \sqrt{ \frac{1}{n(n-1)}\sum_{i=1}^n(x_{i}-\overline{x})^{2}} [/math]
jest estymatorem odchylenia standardowego wartości średniej. Wielkość tę czasem utożsamia się z "błędem wartości średniej".