Ćwiczenia 3

Z Brain-wiki

Analiza_sygnałów_-_ćwiczenia/Fourier_3

Twierdzenie o splocie

Przypomnijmy sobie poznane na wykładzie Twierdzenie o splocie:

[math] g(t)=\left(s * h\right)(t)\quad \Rightarrow \quad G(f)=S(f)\cdot H(f) [/math]

To twierdzenie działa też w drugą stronę:

[math] G(f)=\left(S * H\right)(f)\quad \Rightarrow \quad g(t)=s(t)\cdot h(t) [/math]

W praktyce oznacza to tyle, że jeśli w jednej dziedzinie jakieś dwa sygnały przez siebie przemnożymy, to w drugiej dziedzinie transformaty tych sygnałów splatają się. Własność ta ma bardzo ważne konsekwencje, np. przy estymacji widma skończonego fragmentu sygnału. Dlaczego?

Wyobraźmy sobie, że mamy nieskończenie długi sygnał. Oprócz niego mamy też funkcję, która jest niezerowa tylko na skończonym odcinku. Funkcję taką będziemy nazywać oknem. Pobranie fragmentu sygnału można wyobrazić sobie jako efekt pomnożenia badanego sygnału przez okno. Ta operacja mnożenia w dziedzinie czasu, w dziedzinie częstości odpowiada splotowi widma sygnału z widmem okna. Aby uzyskać sygnał o skończonej długości odrzucamy wyzerowane odcinki. FFT widzi taki skończony odcinek jako periodyczne przedłużenie. Widać, że w praktyce estymowania widma zawsze mamy do czynienia z widmami będącymi splotem widma sygnału i widma okna, ponieważ zawsze pracujemy z sygnałami o skończonej długości.

Zastosowania

  • pozwala na zamianę splotu na mnożenie
  • daje wgląd w okienkowanie
  • łatwiej można zrozumieć działanie filtrów

Okienka

Wstęp

  • Jakie są dostępne okna w scipy.signal? Proszę odwiedzić stronę z dokumentacją.
  • Jak wyglądają te okienka?
from scipy import signal
w = signal.bartlett(10)
plt.plot(w,'.')
plt.show()

Badanie własności okien

Zadanie 1: Własności różnych okien

  • Proszę wykreślić okienko Bartletta o długości 100 i 101 próbek.
  • Proszę wykreślić widmo amplitudowe okna Bartletta o długości 101 próbek w skali dB (20*np.log10(.)), raz korzystając z fft o naturalnej długości okna W = fft(okno), a drugi raz korzystając z przedłużenia zerami (w tym przypadku dostaniemy interpolowaną wersję widma) W = fft(okno, 2048). Proszę zwrócić uwagę na charakterystyczne elementy: szerokość piku głównego, szybkość zanikania listków bocznych, zera.

Przydatna może być tu funkcja do obliczania widma (proszę przeanalizować kod i w razie wątpliwości poprosić o objaśnienie):

import numpy as np
from numpy.fft import  fft, fftfreq, fftshift

def widmo_dB(s, N_fft, F_samp):
    S = fft(s,N_fft)/np.sqrt(N_fft)
    S_dB = 20*np.log10(np.abs(S))
    F = fftfreq(N_fft, 1.0/F_samp)
    return (fftshift(S_dB),fftshift(F))


  • A jakie własności ma poznane na poprzednich zajęciach okno prostokątne? Najprościej można je zrobić tak: window = np.ones(N). Proszę wykonać analogiczne rysunki jak dla okna Bartletta.
  • Proszę porównać przebiegi czasowe i własności widmowe pozostałych okien dostępnych w scipy.signal, m.in.:
    • blackman(M)
    • hamming(M)
    • hanning(M)
    • kaiser(M, beta)

Własności okien w działaniu

Zadanie 2: Okienko i szerokość prążka w widmie

  • Wygeneruj sinusoidę o częstości [math]f=10.2[/math] Hz fazie 0, czasie trwania [math]T=1[/math] s, i częstości próbkowania [math]Fs=100[/math] Hz
  • Wygeneruj okno prostokątne o długości równej długości sinusoidy.
  • Zokienkuj sygnał mnożąc sinusoidę przez okienko
  • Wykreśl zokienkowany sygnał, widmo zokienkowanego sygnału, widmo okienka
  • Powtórz powyższe kroki dla okienek Bartletta, Hanna, Hamminga i Blackmana. Przy wykreślaniu widma zokienkowanego sygnału ustal zakres osi pionowej na [-50 10] (zastosuj py.ylim((-50,10))
  • Proszę porównać widma otrzymane dla poszczególnych typów okienek.


Zadanie 3: Wpływ okienkowania na wykrywalność składowych o różnej amplitudzie

  • Wygeneruj sygnał będący sumą dwóch sinusoid o fazie 0, czasie trwania [math]T=1[/math] s, i częstości próbkowania [math]Fs=100[/math] Hz. Jedna niech ma częstość [math]f=10.2[/math] Hz. Częstość drugiej, w kolejnych zapuszczeniach skryptu proszę zmieniać od 11,4 do 16,4 Hz z krokiem co 0,5 Hz.
  • Jaki jest wpływ okienek na możliwości rozróżnienia dwóch częstości?
  • Proszę powtórzyć iteracje dla przypadku gdy druga z sinusoid ma 10-krotnie niższą amplitudę.