Nowe technologie w fizyce biomedycznej/Posturografia
Spis treści
Posturograf
Zajęcia warsztatowe składające się z wprowadzającego w tematykę zajęć wykładu i indywidualnych ćwiczeń wykonywanych przez studentów. Studenci w czasie zajęć przeprowadzają standardowe pomiary posturograficzne, a następnie analizują zebrane dane.
Plan zajęć
Zajęcia 1:
- Wstęp teoretyczny:
- Wii Balance Board (budowa, główne biblioteki obsługujące sensor, zastosowania)
- Projesjonalne systemy do rejestracji siły nacisku
- Równowaga a stabilność posturalna
- Podstawowe zadania posturograficzne
- Opis wybranych wskaźników do zadań posturograficznych
- Wprowadzenie do pomiarów przeprowadzanych na zajęciach (zapoznanie się z wybranymi scenariuszami oraz modułami do analizy)
- Zapoznanie się z działaniem Wii Balance Board
- Przeprowadzenie pomiarów
Media: WiiBoard.pdf Informacje wstępne oraz opis zadań
Media: WiiBoardENG.pdf Introduction and task description in English
Zajęcia 2,3,4:
- Analiza zebranych danych
- Prezentacja wyników
Pomiary
Pomiary przeprowadzane są w środowisku OpenBCI przy użyciu aplikacji Brain4edu (na Ubuntu 16.04). Opis architektury systemu OpenBCI oraz podręcznik użytkownika Brain4edu dostępne są na stronie http://laboratorium-eeg.braintech.pl/. Z samego OpenBCI można również korzystać na systemie Windows -> instrukcja Media: obci_Windows.pdf.
Zaczynamy od uruchomienia aplikacji Brain. W prawym górnym rogu ekranu pojawi się ikona mózgu będąca interfejsem graficznym aplikacji. Do pomiarów posturograficznych wybieramy opcję 'Wii App', która otworzy okno z wyborem scenariuszy.
Podczas zajęć przeprowadzone zostaną następujące pomiary:
- stanie swobodne z oczami otwartymi/zamkniętymi,
- wychylenia szybkie i "z przytrzymaniem" bez informacji zwrotnej dla badanego (w przód, w tył, w prawo, w lewo),
- wychylenia szybkie i "z przytrzymaniem" z informacją zwrotną dla badanego (w przód, w tył, w prawo, w lewo).
W wyniku każdego pomiaru otrzymujemy komplet trzech plików (domyślna lokalizacja to Katalog Domowy):
- Plik z sygnałem (.raw) zapisanym w formacie binarnym. W pliku znajdują się próbki z pięciu kanałów – wartości z czterech czujników WBB oraz momenty w czasie (w sekundach) mierzone względem pojawienia się pierwszej próbki.
- Plik z metadanymi (.xml), w którym znajdują się szczegółowe informacje dotyczące rejestracji (nazwy kanałów, częstość próbkowania, całkowita liczba próbek itp.).
- Plik ze znacznikami (.tag), w którym zapisywane są momenty kolejnych zdarzeń (np. początek i koniec wykonywania zadania) zsynchronizowane z sygnałem. Każdy znacznik posiada charakterystyczną nazwę, moment wystąpienia w sygnale, długość oraz ewentualnie opis.
Analiza danych
Przygotowanie danych do analizy
Pierwszym etapem analizy jest wczytanie danych. Korzystamy tutaj z funkcji klasy ReadManager. Otrzymany obiekt posiadaja metodę 'get_samples', która zwraca macierz 5-kanałową. Pierwsze 4 kanały to dane z kolejnych sensorów (górny lewy-TL, górny prawy-TR, dolny prawy-BR, dolny lewy-BL), natomiast 5 kanał to próbki czasu wyrażone w [s].
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from obci.signal_processing import read_manager
from obci.signal_processing.balance.wii_preprocessing import *
from obci.signal_processing.balance.wii_analysis import *
file_name = 'still_eyes_closed_eyes_open'
wbr = read_manager.ReadManager(file_name+'.obci.xml', file_name+'.obci.raw', file_name + '.obci.tag')
TL = wbr.get_samples()[0,:]
TR = wbr.get_samples()[1,:]
BR = wbr.get_samples()[2,:]
BL = wbr.get_samples()[3,:]
TIME = wbr.get_samples()[4,:]
Jednak w przypadku niektórych zadań należy jeszcze przed pobraniem próbek, odpowiednio wyciąć interesujące nas dane względem znaczników. Czynność tę wykonuje funkcja 'wii_cut_fragments' przyjmująca obiekt klasy ReadManager i znaczniki początkowe i końcowe, a zwracająca listę obiektów 'smart_tags'. Liczba tych obiektów odpowiada liczbie zdarzeń z danym znacznikiem (dla stania swobodnego lista będzie miała tylko jeden element, natomiast dla wielokrotnych wychyleń będzie ich kilka). Każdy element na tej liście, również posiada metodę 'get_samples'.
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from obci.signal_processing import read_manager
from obci.signal_processing.balance.wii_preprocessing import *
from obci.signal_processing.balance.wii_analysis import *
file_name = 'still_eyes_closed_eyes_open'
wbr = read_manager.ReadManager(file_name+'.obci.xml', file_name+'.obci.raw', file_name + '.obci.tag')
smart_tags = wii_cut_fragments(wbr, start_tag_name='ss_start', end_tags_names=['ss_stop'])
TL = smart_tags[0].get_samples()[0,:]
TR = smart_tags[0].get_samples()[1,:]
BR = smart_tags[0].get_samples()[2,:]
BL = smart_tags[0].get_samples()[3,:]
Na podstawie danch z czterech czujników można wyznaczyć wartości wychyleń w kierunkach x i y (rys. 3).:
[math]x=\frac{(TR+BR)-(TL+BL)}{TR+TL+BL+BR}[/math]
[math]y=\frac{(TR+TL)-(BR+BL)}{TR+TL+BL+BR}[/math]
Należy pamiętać, że dane z czujników pochodzą z układu odniesienia deski Wii Board - zatem uzyskane wartości x i y mieszczą się w zakresie od -1 do 1. Aby uzyskać dane w cm trzeba przemnożyć współrzędne x i y przez odpowiednie czynniki:
Znaczniki 'start_tag_name' oraz 'end_tags_names' dla poszczególnych pomiarów:
- stanie swobodne oczy otwarte: 'ss_start', 'ss_stop'
- stanie swobodne oczy zamknięte: 'ss_eyes_closed_start', 'ss_eyes_closed_stop'
- wychylenia szybkie bez informacji zwrotnej: 'start_fast', 'stop_fast'
- wychylenia "z przytrzymaniem" bez informacji zwrotnej: 'start', 'stop'
- stanie swobodne jako kalibracja do zadań z informacją zwrotną: 'baseline_start', 'baseline_stop'
- wychylenia szybkie z informacją zwrotną: nie ma znaczników - ciągły zapis danych
- wychylenia "z przytrzymaniem" z informacją zwrotną: 'start_1', 'finish'
Dla przypadku wychyleń "z przytrzymaniem" obiekty w liście zwróconej przez funkcję 'wii_cut_fragments' odpowiadają kolejnym realizacjom zadania. Mają one jednak nieco inną strukturę. Oprócz metody 'get_samples()', za pomocą której tak jak poprzednio wczytamy dane z 4 czujników, posiadają również metody:
- 'get_end_tag()' - zwraca strukturę, która w polu ['desc']['value'] przechowuje informację o tym czy zadanie zostało wykonane poprawnie (0-niepoprawnie, 1-poprawnie)
- 'get_start_tag()' - zwraca strukturę, która w polu ['desc']['value'] przechowuje informację o kierunku wychylenia (pole 'direction', wartości: 'up','down','left','right') oraz o poziomie trudności zadania (pole 'level'). Aby wydobyć informację o kierunku wychylenia (analogicznie dla poziomiu trudności) można skorzystać z funkcji:
eval(smart_tags[index].get_start_tag()['desc']['value'])['direction']
Informacje o poziomie trudności, poprawności wykonania zadania oraz kierunku będą potrzebne do podjęcia decyzji, które próby wykonania zadania będą brane do dalszej analizy. Interesują nas jedynie te poprawne o najwyższym poziomie trudności w każdym z kierunków.
Analiza danych: stanie swobodne
W przypadku stania swobodnego z oczami zamkniętymi oraz otwartymi, studenci mają za zadanie wyznaczyć następujące wskaźniki posturograficzne:
- położenie środka równowagi COP (center of posture)
- maksymalne przemieszczenie względem położenia środka równowagi (w AP,ML oraz przestrzeni AP/ML),
- długość drogi względem położenia środka równowagi (w AP,ML oraz przestrzeni AP/ML),
- średnia prędkość przemieszczenia (w AP,ML oraz przestrzeni AP/ML),
- wskaźnik Romberga - stosunek różnicy długości drogi przy oczach zamkniętych i otwartych, do sumy długości drogi przy oczach zamkniętych i otwartych
Dokładny opis matematyczny wyżej wymienionych wskaźników znajduje się w pracy (Prieto, 1996).
Należy również przedstawić na wykresie przebieg ruchu COP oddzielnie w płaszczyźnie AP, ML oraz w przestrzeni AP/ML.
Dodatkowo studenci mają za zadanie przeprowadzić analizę rozkładu przestrzennego punktów statokinezjogramu. Statokinezjogramem lub posturogramem nazywamy wędrówkę COP w dwuwymiarowej płaszczyźnie podparcia. Kierunki na tej płaszczyźnie określa się jako AP (y) lub ML (x), przy czym ML oznacza wychylenia w płaszczyźnie czołowej (medio-lateral), a AP w płaszczyźnie strzałkowej (anterio-posterior). W celu przeprowadzenie takiej analizy, cały zakres zostaje podzielony na jednakowe komórki. Następnie obliczony zostaje histogram przestrzenny czasu przebywania w każdej z nich. Taki histogram pozwala ocenić, czy kontrola położenia referencyjnego COG (center of gravity), a tym samym pionowa orientacja ciała, jest prawidłowa. Wyznacznikiem prawidłowej kontroli jest histogram o skupionym rozkładzie i z wyraźnym maksimum. Upośledzenie kontroli objawia się tym, że histogram przestrzenny staje się rozmyty lub wyraźnie niesymetryczny (Błaszczyk, 2004).
Analiza danych: wychylenia dynamiczne
Oprócz wskaźników statycznych stabilności do oceny kontroli posturalnej wykorzystuje się również miary dynamiczne. Z punktu widzenia miar bezpośrednich, istotna jest ocena kontroli środka ciężkości ciała w czasie jego świadomego przemieszczania w wyznaczonym kierunku. W ramach pomiarów, studenci mieli za zadanie wykonać dwa rodzaje wychyleń (szybkie i "z przytrzymaniem") w dwóch warunkach: bez informacji zwrotnej dla badanego oraz z informacją zwrotną dla badanego. Dla każdego z przypadków należy wyznaczyć następujące parametry:
- położenie środka równowagi (dla warunku bez informacji zwrotnej będzie to COP ze stania swobodnego z oczami otwartymi, natomiast dla warunku z informacją zwrotną będzie to COP z sesji kalibracyjnej)
- wartość maksymalnego wychylenia (w określonym kierunku) względem położenia równowagi,
- wykresy składowych wychwiań względem położenia równowagi w płaszczyźnie AP, ML w zależności od czasu oraz wypadkowa trajektoria przemieszczeń COP (w dwuwymiarowej przestrzeni AP, ML).
i zbadać czy informacja zwrotna wpływa na rezultaty badanego.
Literatura:
- Błaszczyk J., Biomechanika kliniczna, PZWL, 2004
- Prieto T.E. et al., Measures of postural steadiness: differences between healthy young and elderly adults, IEEE Trans Biomed Eng, 1996, 43(9):956-66