
Zastosowania DNN 
do analizy EEG

na podstawie:



Ogólnie

• Przykład zastosowania sieci głębokich do wytworzenia 
cech użytecznych do dekodowania sygnału EEG


• Demonstracja cech wytworzonych przez sieć


• Porównanie do cech opracowanych w tej dziedzinie przez 
ekspertów



Reprezentacja danych 
wejściowych

• Sygnał EEG jest zazwyczaj wielokanałowy


• Kanały nie są w pełni niezależne - mają strukturę korelacyjną 
w przestrzeni


• W ramach danego kanału występuje struktura korelacji 
czasowych


• Istotne informacje niesione są też przez różne pasma 
częstości


• W klasycznym podejściu wykorzystujemy filtry przestrzenne, 
filtry częstotliwościowe, analizę morfologiczną (kształtu)



Przykładowa mapa zjawiska synchronizacji i 
desynchronizacji sygnału EEG w przestrzeni 
czas-częstość dla sygnału zarejestrowanego 
przez elektrodę C3. 


Osoba badana wykonywała szybki ruch palcem 
w momencie oznaczonym 0.


 Kolory odpowiadają procentowej zmianie mocy 
względem poprzedzającego okresu 2s, zgodnie 
ze skalą barw umieszczoną po prawej stronie. 
Na poziomej osi - czas w s, na pionowej 
częstość w Hz.



Mapowanie kory czuciowo-ruchowej za pomocą ERD/ERS.Pacjent z przyczyn medycznych miał 
umieszczoną na korze motorycznej siatkę elektrod (6x8, odstęp 1cm). Pacjent miał zaciskać 
pięść w odpowiedzi na bodziec wzrokowy przez cały czas trwania bodźca (3s) Prezentowane 

mapy istotnych statystycznie zmian uzyskano na podstawie 49 wolnych od artefaktów realizacji.
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Figure 2: Timing scheme of the paradigm.

left hand, right hand, foot or tongue) appeared and stayed on the screen for
1.25 s. This prompted the subjects to perform the desired motor imagery
task. No feedback was provided. The subjects were ask to carry out the
motor imagery task until the fixation cross disappeared from the screen at
t = 6 s. A short break followed where the screen was black again. The
paradigm is illustrated in Figure 2.

Data recording

Twenty-two Ag/AgCl electrodes (with inter-electrode distances of 3.5 cm)
were used to record the EEG; the montage is shown in Figure 3 left. All
signals were recorded monopolarly with the left mastoid serving as reference
and the right mastoid as ground. The signals were sampled with 250Hz and
bandpass-filtered between 0.5Hz and 100Hz. The sensitivity of the amplifier
was set to 100 µV. An additional 50 Hz notch filter was enabled to suppress
line noise.

Figure 3: Left: Electrode montage corresponding to the international 10-20
system. Right: Electrode montage of the three monopolar EOG channels.

In addition to the 22 EEG channels, 3 monopolar EOG channels were
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Przykładowe dane: BCI competition IV 
dataset 2a  

• wskazane wyobrażenia ruchowe ręka 
lewa albo prawa, stopy, język


• 22 kanały  EEG 


• filtrowanie: 0.5-100Hz; filtr sieciowy), 


• 250Hz próbkowanie, 


• 4 klasy, 


• 9 osób


• 288 epok danych na osobę
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dostajemy 44 sygnały,  
każdy przefiltrowany czasowo  
na 40 sposobów

dostajemy 40 różnych  
liniowych kombinacji   
 44 (syg.) x 40 (filt. czasowych)



Architektury

Jednostki typu ELU



features is that units in individual layers of the ConvNet can
only extract features from samples that they have “seen,”
that is, from their so-called receptive field (Fig. 5). A way to
further narrow down the possibly used features is to use
domain-specific prior knowledge and to investigate whether
known class-discriminative features are learned by the Con-
vNet. Then it is possible to compute a feature value for all
receptive fields of all individual units for each of these class-
discriminative features and to measure how much this fea-
ture affects the unit output, for example, by computing the
correlation between feature values and unit outputs.

In this spirit, we propose input-feature unit-output cor-
relation maps as a method to visualize how networks
learn spectral amplitude features. It is known that the
amplitudes, for example of the alpha, beta and gamma
bands, provide class-discriminative information for motor
tasks [Ball et al., 2008; Pfurtscheller, 1981; Pfurtscheller
and Aranibar, 1979]. Therefore, we used the mean enve-
lope values for several frequency bands as feature values.
We correlated these values inside a receptive field of a
unit, as a measure of its total spectral amplitude, with the
corresponding unit outputs to gain insight into how much
these amplitude features are used by the ConvNet. Posi-
tive or negative correlations that systematically deviate
from those found in an untrained net imply that the Con-
vNet learned to create representations that contain more
information about these features than before training.

A limitation of this approach is that it does not distin-
guish between correlation and causation (i.e., whether the

change in envelope caused the change in the unit output,
or whether another feature, itself correlated to the unit
output, caused the change). Therefore, we propose a sec-
ond visualization method, where we perturbed the ampli-
tude of existing inputs and observed the change in
predictions of the ConvNets. This complements the first
visualization and we refer to this method as input-
perturbation network-prediction correlation map. By using
artificial perturbations of the data, they provide insights in
whether changes in specific feature amplitudes cause the
network to change its outputs. Details on the computation
of both NCM methods are described in the following.

Input-feature unit-output correlation maps

The input-feature unit-output correlation maps visualize
the frequency-resolved correlation between unit outputs of
the convolutional filters of the ConvNets and the power of
all the samples in the receptive field of these units (Fig. 6).

To achieve this, we performed the following steps:

1. For each frequency band of interest, the signal was
bandpass-filtered to that frequency band and the
envelope was computed.

2. For each frequency band of interest, the squared
mean envelope for each receptive field of a given
layer was computed. We did this by computing a
moving window average of the squared envelope
with the moving window size the same as the recep-
tive field size (this was the input feature for which
we then evaluated how much it affected the unit
output).

3. Unit outputs of the given layer on the original signal
were computed.

4. Linear correlations between the squared mean enve-
lope values for all the frequency bands and the unit
outputs for each convolutional filter were computed.
These correlations should reflect whether a filter
might compute an approximation of the squared
mean envelope of all the samples in its receptive
field.

As we compute correlations after concatenating all sam-
ples of all trials, these correlations reflect both within-trial
and between-trial effects. The proposed method could, how-
ever, be straightforwardly extended to disentangle these
two sources. We computed the correlations for a filter bank
ranging from 0 to 119 Hz. An example result for a single
electrode and a single subject is shown in Figure 7.

To compute a single scalp plot for a frequency band, we
computed the mean of the absolute correlations over all
units for each convolutional filter and each electrode for
that frequency band. To disentangle effects which are
caused by the training of the network from those caused
by the architecture, we computed the scalp plot for a
trained and an untrained model. The scalp plot for a

Figure 5.
ConvNet Receptive Fields Schema. Showing the outputs, inputs,
and receptive fields of one unit per layer. Colors indicate differ-
ent units. Filled rectangles are individual units, and solid lines
indicate their direct input from the layer before. Dashed lines
indicate the corresponding receptive field in all previous layers
including the original input layer. The receptive field of a unit
contains all inputs that are used to compute the unit’s output.
The receptive fields get larger with increasing depth of the layer.
Note that this is only a schema and exact dimensions are not
meaningful in this figure. [Color figure can be viewed at wileyon-
linelibrary.com]
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Koncepcja pola recepcyjnego

• zapełniane prostokąty to pojedyncze jednostki


• linie ciągłe to ich bezpośrednie pole recepcyjne


• linie przerywane to to efektywne pole recepcyjne - sygnał z tego pola w różnym stopniu przetworzony, dociera do danej 
jednostki



Wgląd w wyuczone cechy
• mapy korelacji pomiędzy wyjściem 

jednostek, a wartościami cech 
wejściowych. 


• Jako cechy wejściowe brane były 
średnia wartość mocy w pewnym 
paśmie częstości przypadająca na 
pole recepcyjne danej jednostki.


• mapy korelacji perturbacji wartości 
wejściowych i predykcjami sieci
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Przykładowa mapa zjawiska synchronizacji i 
desynchronizacji sygnału EEG w przestrzeni 
czas-częstość dla sygnału zearejestrowanego 
przez elektrodę C3. Osoba badana 
wykonywała szybki ruch palcem w momencie 
oznaczonym 0. Kolory odpowiadają 
procentowej zmianie mocy względem 
poprzedzającego okresu 2s, zgodnie ze skalą 
barw umieszczoną po prawej stronie. Na 
poziomej osi - czas w s, na pionowej częstość 
w Hz.



Mapy korelacji pomiędzy wyjściami 
jednostek, a wartościami cech wejściowych. 

• dla każdego interesującego pasma częstości sygnał był filtrowany pasmowo i była obliczana 
obwiednia


• dla kadego pasma i dla kadego pola recepcyjnego danej warstwy obliczono średni kwadrat 
obwiedni 



Mapy korelacji pomiędzy wyjściami jednostek, a 
wartościami cech wejściowych. 

• obliczono średnią moc w poszczególnych interesujących pasmach 
częstości dla pól recepcyjnych. Tu przykładowe trzy pasma w 10 
próbach dla wybranych pól recepcyjnych.

subject is then the scalp plot of the trained model minus
the scalp plot of the untrained model (Fig. 6b). The group
scalp plot is the mean of these differential scalp plots over
all subjects.

To compare the resulting maps against scalp maps that
simply result from class-feature correlations, we also com-
puted the linear correlation between mean squared enve-
lope values and the one-hot-encoded classes, in the same
way as before. First, for each trial, each sensor, and each
frequency band, we constructed a vector of the moving
window squared envelope values as before (with the mov-
ing window now the size of the receptive field of the last
layer of the ConvNet). Second, for each trial and each
class, we constructed a vector of either value 1 if the trial
was of the given class or value 0 if it was of another class.
The concatenated vectors then resulted in a time series
with value 1 if the time point belonged to a given class
and value 0 if it did not. Then we correlated the moving
window squared envelope time series vectors with the

class time series vectors, resulting in one correlation value
per class, sensor, and frequency band combination. As in
the other computations, we subtracted the correlations
resulting from predictions of an untrained deep ConvNet.

A further question is whether the correlations could be
a result of the unit outputs encoding the final class label.
Such correlations could also result from using other dis-
criminative features than the features we analyzed. To
investigate this question, we correlated the unit outputs
for each layer with the class labels. Here, we proceeded
the same way as described in the previous paragraph, but
correlated unit outputs directly with class labels. We then
computed a single absolute correlation coefficient per layer
in two ways: First, we computed the mean absolute corre-
lation coefficient for all classes and all filters. These corre-
lations should show how strongly the unit outputs encode
the class labels on average across filters. Second, we com-
puted the maximum absolute correlation coefficients for
each class over all filters and then computed the mean of

Figure 6.

Computation overview for input-feature unit-output network
correlation map. (a) Feature inputs and unit outputs for input-
feature unit-output correlation map. Moving average of squared
envelopes and unit outputs for 10 trials. Upper rows show
mean squared envelopes over the receptive field for three fre-
quency ranges in the alpha, beta, and gamma frequency band,
standardized per frequency range. Lower rows show corre-
sponding unit outputs for three filters, standardized per filter.
All time series standardized for the visualization. (b) Input-
feature unit-output correlations and corresponding scalp map
for the alpha band. Left: Correlation coefficients between unit
outputs of three filters and mean squared envelope values over
the corresponding receptive field of the units for three fre-
quency ranges in the alpha (7–13 Hz), beta (13–31 Hz), and

gamma (71–91 Hz) frequency band. Results are shown for the
trained and the untrained ConvNet and for one electrode. Mid-
dle: Mean of the absolute correlation coefficients over the three
filters for the trained and the untrained ConvNet, and the differ-
ence between trained and untrained ConvNet. Right: An exem-
plary scalp map for correlations in the alpha band (7–13 Hz),
where the color of each dot encodes the correlation difference
between a trained and an untrained ConvNet for one electrode.
Note localized positive effects above areas corresponding to the
right and left sensorimotor hand/arm areas, indicating that activ-
ity in these areas has large absolute correlations with the pre-
dictions of the trained ConvNet. [Color figure can be viewed at
wileyonlinelibrary.com]
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• obliczono odpowiedzi jednostek dla oryginalnego sygnału dla tych 
prób.
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All time series standardized for the visualization. (b) Input-
feature unit-output correlations and corresponding scalp map
for the alpha band. Left: Correlation coefficients between unit
outputs of three filters and mean squared envelope values over
the corresponding receptive field of the units for three fre-
quency ranges in the alpha (7–13 Hz), beta (13–31 Hz), and

gamma (71–91 Hz) frequency band. Results are shown for the
trained and the untrained ConvNet and for one electrode. Mid-
dle: Mean of the absolute correlation coefficients over the three
filters for the trained and the untrained ConvNet, and the differ-
ence between trained and untrained ConvNet. Right: An exem-
plary scalp map for correlations in the alpha band (7–13 Hz),
where the color of each dot encodes the correlation difference
between a trained and an untrained ConvNet for one electrode.
Note localized positive effects above areas corresponding to the
right and left sensorimotor hand/arm areas, indicating that activ-
ity in these areas has large absolute correlations with the pre-
dictions of the trained ConvNet. [Color figure can be viewed at
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subject is then the scalp plot of the trained model minus
the scalp plot of the untrained model (Fig. 6b). The group
scalp plot is the mean of these differential scalp plots over
all subjects.

To compare the resulting maps against scalp maps that
simply result from class-feature correlations, we also com-
puted the linear correlation between mean squared enve-
lope values and the one-hot-encoded classes, in the same
way as before. First, for each trial, each sensor, and each
frequency band, we constructed a vector of the moving
window squared envelope values as before (with the mov-
ing window now the size of the receptive field of the last
layer of the ConvNet). Second, for each trial and each
class, we constructed a vector of either value 1 if the trial
was of the given class or value 0 if it was of another class.
The concatenated vectors then resulted in a time series
with value 1 if the time point belonged to a given class
and value 0 if it did not. Then we correlated the moving
window squared envelope time series vectors with the

class time series vectors, resulting in one correlation value
per class, sensor, and frequency band combination. As in
the other computations, we subtracted the correlations
resulting from predictions of an untrained deep ConvNet.

A further question is whether the correlations could be
a result of the unit outputs encoding the final class label.
Such correlations could also result from using other dis-
criminative features than the features we analyzed. To
investigate this question, we correlated the unit outputs
for each layer with the class labels. Here, we proceeded
the same way as described in the previous paragraph, but
correlated unit outputs directly with class labels. We then
computed a single absolute correlation coefficient per layer
in two ways: First, we computed the mean absolute corre-
lation coefficient for all classes and all filters. These corre-
lations should show how strongly the unit outputs encode
the class labels on average across filters. Second, we com-
puted the maximum absolute correlation coefficients for
each class over all filters and then computed the mean of
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• obliczono odpowiedzi jednostek dla oryginalnego sygnału dla tych 
prób.

• w tym przykładzie Filter 2 ma odwrotne zachowanie, a Filter 3 zachowuje się podobnie jak średnia moc w 
paśmie alfa w jego polu recepcyjnym



Mapy korelacji pomiędzy wyjściami jednostek, a 
wartościami cech wejściowych. 

• obliczono korelacje pomiędzy średnimi 
kwadratami obwiedni w poszczególnych 
polach recepcyjnych a odpowiedzią 
jednostek (filtrów) -> to powinno 
ilustrować czy dana jednostka mogłaby 
realizować filtrowanie w danej częstości


• zrobiono to dla sieci po i przed 
treningiem


• uśredniono wartości bezwzględne 
odpowiedzi jednostek


•  na rysunku topograficznym 
zilustrowano rozkład przestrzenny różnic 
w korelacjach dla danego pasma przed i 
po treningu
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Poszukiwanie nieznanych 
cech dyskryminujących klasy
• skorelowano dane wyjściowe jednostek dla każdej warstwy bezpośrednio z etykietami 

klas.


•  Następnie obliczono pojedynczy bezwzględny współczynnik korelacji na warstwę na 
dwa sposoby:


• obliczono średni bezwzględny współczynnik korelacji dla wszystkich klas i 
wszystkich filtrów. Korelacje te powinny pokazywać, jak silnie dane wyjściowe filtra 
kodują etykiety klas. 


• obliczono maksymalne bezwzględne współczynniki korelacji dla każdej klasy dla 
wszystkich filtrów, a następnie uśredniono maksima z czterech klas. Korelacje te 
powinny pokazywać, jak mocno dane wyjściowe jednostki kodują etykiety klas dla 
najbardziej „informatywnych” filtrów. 


• Wreszcie, w przypadku obu wersji porównano różnicę tych korelacji między modelem 
wytrenowanym a niewytrenowanym. 


• To podejście pozwoliło pokazać, w jaki sposób powstają korelacje klasy w kolejnych 
warstwach ConvNet.
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Podsumowanie wyników
• Zastosowanie dropoutu, 

batch-normalizacji i 
jednostek ELU pozwoliło 
osiągnąć wyniki 
porównywalne z 
najlepszymi rozwiązaniami 
opartymi na klasycznych 
filtrach przestrzennych i 
pasmowych.


• Jak sugerują w konkluzjach 
Autorzy zastosowanie LRP 
być może pomogłoby w 
odkryciu cech wydobytych 
przez sieć, innych niż tylko 
związki z topografią i 
pasmami częstości.


