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Abstract—A new multiclass Brain–computer Interface (BCI)
based on the modulation of sensorimotor oscillations by imag-
ining movements is described. By the application of advanced
signal processing tools, statistics and machine learning, this BCI
system offers: (a) asynchronous mode of operation (b) automatic
selection of user-dependent parameters based on an initial
calibration (c) incremental update of the classifier parameters
from feedback data. The signal classification uses spatially filtered
signals and is based on spectral power estimation computed in
individualized frequency bands, which are automatically identi-
fied by a specially tailored AR-based model. Relevant features
are chosen by a criterion based on Mutual Information. Final
recognition of motor imagery is effectuated by a multinomial
logistic regression classifier. This BCI system was evaluated in
two studies. In the first study, five participants trained the
ability to imagine movements of the right hand, left hand and
feet in response to visual cues. The accuracy of the classifier
was evaluated across four training sessions with feedback. The
second study assessed the information transfer rate (ITR) of
the BCI in an asynchronous application. The subjects’ task
was to navigate a cursor along a computer rendered 2D maze.
A peak information transfer rate of 8.0 bit/min was achieved.
Five subjects performed with a mean ITR of 4.5 bit/min and
an accuracy of 74.84%. These results demonstrate that the use
of automated interfaces to reduce complexity for the intended
operator (outside the laboratory) is indeed possible. The signal
processing and classifier source code embedded in BCI2000 is
available from https://www.brain-project.org/downloads.html.

Index Terms—Brain–computer interface (BCI), electroen-
cephalography (EEG), event-related synchronization and desyn-
chronization (ERD/ERS), motor imagery, neurofeedback.

I. INTRODUCTION

BRAIN-COMPUTER Interfaces (BCIs) measure human
brain activity to detect and discriminate the occurrence of

specific phenomena in the brain allowing users to communi-
cate or control external devices [1]. Although BCIs may mea-
sure brain activity through magnetoencephalography (MEG),
functional magnetic resonance imaging (fMRI), functional
near infrared imaging (fNIR), positron emission tomography
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(PET), electrocorticography (ECoG) or microelectrode record-
ings [2], most BCIs measure electrical potentials on the scalp
(electroencephalography (EEG)) [3]. The main application of
a BCI has been and is to control assistive devices and provide
communication for severely disabled users. BCIs can be used
for basic communication [4], control of external devices, such
as wheelchairs [5], robot arms [6] or prosthetic devices [7]; and
entertainment applications [8]–[10]. Further, recent progress in
BCI research has broadened the field of applications, in which
the principal goal of the BCI is not the communication but
rehabilitation [11] and neuro-physiological regulation, which
is known as neurofeedback [12]. A BCI system can be
considered to be the most advanced neurofeedback system
available.

One type of EEG-based BCI exploits the fact that during
execution of different tasks the brain rhythms are specifi-
cally modulated. The specificity is in time-course, frequency
ranges, and spatial organization of the modulation. The relative
decrease of power of the oscillations is called event-related
desynchronization (ERD); the opposite, increase of rhythmic
activity is known as event-related synchronization (ERS) [13].
A robust effect is that both movement and the imagination of
movement (motor imagery (MI)) of a limb are accompanied by
decrease of power in µ (7–13 Hz) and β (13–30 Hz) frequency
bands relative to the baseline level followed by a rebound of
power in the beta band [14]. Moreover, due to somatotopic or-
ganization of the motor cortex the spatial patterns of ERD/ERS
are specific for each limb. Because of its characteristics, motor
imagery constitutes the most natural paradigm for building a
BCI, but achieving an efficient MI-BCI is demanding for the
user and challenging for the constructor. It is demanding for
a user because, it usually requires repeated training to master
the control of the MI for it to be precise enough to be useful
(cf. [15]). It is challenging for the constructors since it requires
more advanced signal processing tools. The most difficult issue
in this paradigm is the selection of the individual set of features
that provide the most efficient BCI. These features are most
often some functions of the energy of EEG signal in a set of
frequency-bands, spatial and time ranges.

Generally, there are two possible modes of a MI-BCI
system [16]. The synchronous or cue-paced interface allows
interactions only in fixed time windows determined by the
BCI. This kind of interface is easier to implement, but less
convenient to use. Knowledge of the onset of the MI simplifies
the signal processing and classification, but forces the user
to follow the rate of cues. The other mode, known as asyn-
chronous MI-BCI, assumes that the user generates the MI in
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a self-paced manner. In a system implementing this approach,
the signal is analyzed continuously. One of the first approaches
to develop asynchronous systems was presented in late 90s
[17]. That system performed quasi-continuous classification of
the user motor imagination and fed it back in a visual form.
However, there were some limitations. The user was presented
with the cue of the desired imagination. Next, he/she had to
perform the motor imagination continuously until the end of
the trial. The system was not designed to classify periods
in which the user did not perform any motor imagination.
Moreover, the Kalman filters used in that approach were
evolving between the cue and the end of imagination period.
Thus, the system can not be considered asynchronous and
in reality does not allow a self paced usage. A system with
similar behavior is implemented in the standard application of
BCI2000 [18].

The present work presents advanced signal processing tools
used to detect and discriminate different motor imagery classes
in ongoing EEG. Our approach includes calibration runs where
data are collected to set-up a subject-specific classifier (no
feedback is provided), training runs where the classifier is used
to provide feedback to the user while imagination is requested
in a trial-based paradigm, and application runs where the user
controls a cursor on a computer rendered 2D maze or any other
available application in a self-paced manner. The interface
used for user training is similar to the paradigm described
in [17] with some essential differences. Each classification is
performed independently of the preceding ones, and the system
is designed to classify the non-control state of the subject.
Moreover, the temporal information since the beginning of
the trial, or the cue is not used by the classifier. The following
aspects of the proposed MI-BCI system can be highlighted:
• the calibration function to fit the classifier parameters to

the user is completely automated;
• the online classification of non-control and three motor

imagery classes is asynchronous;
• the classifier can be updated with data recorded during

training runs;
• the graphical user interface (GUI) provides online feed-

back to the user.
In the following section, the signal processing approach used
in this work and the proposed methodology to evaluate the
system are presented in detail.

II. METHODS

A. BCI Signal Processing

This section describes the signal processing procedures used
for calibration, i.e., obtaining individualized parameters for
classification, updating these parameters after the subsequent
user training, and online signal processing and classification
for BCI operation. These issues are described in detail in
subsections 1–3.

1) Calibration Algorithm: The aim of the calibration is
to derive individualized parameterization of EEG signals. In
fact, to construct the classifier, a separate parameterization is
sought for discriminating each intentional control (IC) state,
related to different MI, from the non-control (NC) state, and

for discriminating among various IC states. In this work, three
IC states related to imagination of movement of: left hand
(ICLH ), right hand (ICRH ), and feet (ICF ), are considered.
The parameterized data is subsequently used to train a hier-
archy of logistic regression classifiers [19]. The calibration
algorithm consists of the following main steps:

(a) Estimation of spatial filters.
(b) Identification of individualized µ and β frequency bands.
(c) Parameterization of EEG.
(d) Selection of features relevant for discrimination between

NC and each of the IC states.
(e) Training of the logistic regression classifiers for discrim-

ination between NC and each of IC states.
(f) Selection of features relevant for discrimination between

the IC states.
(g) Training of the multinomial logistic regression classifier

for discrimination between the IC states.
Each of these steps is described in detail in paragraphs a)–g)
below.

a) Estimation of spatial filters: Differences of ERD/ERS
spatial patterns for different limbs can be made more evident
if the multichannel data is subjected to a suitable transforma-
tion [13]. Let us assume that there are m simultaneously active,
statistically independent sources s[t] = {s1[t], . . . , sm[t]}.
Then, we can consider the signal xi[t], recorded by the
ith electrode, as an instantaneous linear mixture of signals
originating from the sources s[t]. This is due to the linear su-
perposition of electromagnetic fields and almost instantaneous
propagation in the spatial scale of a head. This assumption
leads to the model:

x[t] = As[t], (1)

where A is the mixing matrix, which element aij describes
the contribution of jth source to the signal recorded by ith

electrode. The transformation1 P̂ = Â−1 can be used to
find the unmixed signals that approximate the signals of
independent sources:

ŝ[t] = P̂x[t]. (2)

In real settings, we know neither the source signals s[t] nor
the matrix A. Only the signals x[t] are observed. The goal of
estimating the approximated matrix Â and signal ŝ[t] from x[t]
is known as the blind source separation (BSS) [20] (see also
Appendix A). The individual unmixed signals ŝ are related
to some abstract statistically independent sources.2 Signals
transformed by spatial filter P̂ approximate the statistically
independent components which are more specific for differ-
ent classes of motor imagery than the original signals. In
the system presented in this work two transformations were
implemented: one, P̂µ, for µ (7–13 Hz) and the other, P̂β , for
β (13–30 Hz) band. Thus in order to estimate the transforma-
tions, EEG data are band-pass filtered in the corresponding
frequency ranges. Then, the IC epochs are extracted and split
into partially overlapping, and quasi stationary time intervals.

1Theˆsymbol denotes estimated quantities.
2There is no direct correspondence between the physiological sources and

the unmixed signals estimated by BSS since e.g., a number of correlated
physiological sources can contribute to a single unmixed signal.
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We found that 2 s intervals can be considered quasi-stationary.
For each IC class and each time interval the covariance matrix
is estimated. The transformation that jointly approximately
diagonalizes the set of covariance matrices is the sought
spatial filter P̂. It can be computed using the FFDiag [21]
or JADiag [22] algorithm.

b) Identification of individual µ and β frequency bands:
It is known that characteristic motor imagery causes mod-
ulations of EEG power spectra. In most BCI systems, the
selection of features from the spectra requires interaction with
an operator. A workaround of this problem was proposed
in [23]. It relied on application of Adaptive Autoregressive
Model (AAR) to analyze the ERD/ERS effect. The authors
showed that power spectrum changes are reflected in changes
of the autoregressive coefficients. However, ERD/ERS changes
occur mainly in µ and β frequency bands. Analyses of the
whole spectrum is not optimal and the exact range of these
frequency bands vary between subjects. Thus, it is desirable to
determine the individual limits of these bands. In this work, the
individualized bands, parameterized by mean frequency and
band-width, are identified automatically using the following
procedure:
• From the raw calibration signals extract the NC epochs.
• Band-pass filter the data in the frequency range 5–35 Hz.
• Fit an autoregressive model (AR) for each channel sepa-

rately. The order of the model is estimated by means of
Schwarz criterion [24]:

SC(p) = log(E) +
2p log(N)

N
(3)

where E is the residual variance, N is the number of
samples in a single epoch. The selected order corresponds
to the minimum of the SC curve for odd p ∈ {5, . . . , 15}.

• Decompose the transfer function of each AR model by
means of frequency-amplitude-damping (FAD) method
(see Appendix B). This decomposition yields a param-
eterization of spectral peaks in terms of their mean
frequency and span.

• For each channel, select the spectral peaks localized
within the µ and β frequency ranges.

• Combine the peaks in the µ band to obtain one µind
band common to all channels. The combination is done
using the k-means method with number of cluster k = 1.
Similarly the combination of the β band peaks into two
βind bands is achieved by k-means analysis with k = 2.
c) Parameterization of EEG: At this stage of calibration

the following computation is undertaken: spatial filters P̂µ and
P̂β for general µ (7–13 Hz) and β bands (13–30 Hz), and the
ranges of individualized µind and βind bands. The features
are obtained for the intervals during the MI and NC epochs
for each of the general frequency bands b ∈ {µ, β} using the
following procedure:
• The raw calibration signals x[t] are first spatially filtered

giving components ŝb[t] associated with the given fre-
quency band b:

ŝb[t] = P̂bx[t] (4)

• For each ith component ŝi,b[t], compute the power spec-
trum estimate, using the multitaper method (MTM) (see

Appendix C):

Si,b(f) = MTM(ŝi,b[t]). (5)

• Integrate the power spectrum in these individualized
frequency ranges R = {µind, βind}, which are contained
in the band b:

Si,R =
∑
f∈R

Si,b(f). (6)

• A feature is defined as:

X(i, R) = log10 Si,R. (7)

As a result of the above procedure an interval of the EEG sig-
nal is parameterized by N = (number of channels)× (number
of individualized frequency bands) features. The vector of fea-
tures, evaluated for the epoch of EEG, gives a representation
of this signal in the N dimensional vector space spanned by
the features.

d) Selection of features relevant for discrimination be-
tween NC and each of the IC states: Since the classifier is
meant to work in an asynchronous mode, the time intervals
for which each type of motor imagery is most distinct from the
NC state is determined. Features for discriminating between
NC and each of the IC state are derived. However, due to
the limited number of realizations of IC, the construction of
a reliable classifier requires reduction of the dimensionality
of the feature space. This reduction is reasonable also since
some of the features are irrelevant to the classification of motor
imagery, others may be redundant. A common approach to
solve the problem of selection of an optimal subset of features
is to use the mutual information between the feature and the
class label. This method was also applied in this work and
is described in detail in Appendix D. Finally, for each time
interval, and for each ICk (k ∈ {RH,LH,F}) separately, the
following steps are undertaken:
• Extract data from all trials representing given time inter-

val within the given ICk.
• Extract data from all trials representing NC state.
• Evaluate features for the extracted data according to (4)–

(7).
• Determine the reduced feature space (see Appendix D in

(21)–(24)).
• Form two sets of reduced feature vectors: one for the ICk,

and the other for NC data.
• Compute the Mahalanobis distance (MD) (see Appendix

E) between the two sets of vectors.
The best time interval is defined as the one which gives the
greatest MD. As a result, for each IC class a reduced feature
space optimally suited for discriminating this IC class from
the resting state is determined. The sets of reduced feature
vectors for the best time interval for the IC, and for the NC
data are saved in a file for use in the on-line mode.

e) Training of the logistic regression classifiers for dis-
crimination between NC and each of IC states: The set of
features computed for the best time intervals for discrimination
between the NC and IC state are used as training data to
estimate parameters of the first stage of multinomial logistic
regression classifiers.
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f) Selection of features relevant for discrimination be-
tween the IC states: The data from the best time intervals
of each IC class are subsequently used to select the reduced
feature space for second stage classifier. The process of
reduction of number of these features is as follows:
• Extract data from all trials representing best time intervals

selected within the given ICk.
• Evaluate features for the extracted data according to (4)–

(7).
• Determine the reduced feature space (see Appendix D in

(21)–(24)).
The sets of reduced feature vectors for discrimination of the
IC data are saved in a file for use in the on-line classification.

g) Training of the multinomial logistic regression classi-
fier for discrimination between the three IC states: The set
of features identified for discriminating between various IC
classes is used as training data to estimate parameters of the
second stage multinomial logistic regression classifier.

2) Updating the classifier parameters: The EEG data
recorded during the training runs can be used to update
subject-specific parameters of the classifier, as also proposed
in [25]. In our work, the re-estimation of the classifier param-
eters is based on all epochs of data from the initial calibration,
and those epochs from previous and current training runs
which were classified in accordance with the initial cue.
Note, that during training runs the classifier does not use the
information about the cue or the time since the cue onset. That
is, the EEG data is continuously monitored, and the classifier
first decides whether the user is currently trying to generate
a control signal, then decide exactly which control signal is
being generated. This information is passed to the training
interface for providing feedback to the user and is stored for
later offline use. The update of the classifier takes place offline.
If the classifier output corresponds to desired MI-task, the
previous 2 s EEG-data (length of the time window) was added
to database of correct trials. The algorithm for the update of
spatial filter, feature evaluation and selection, and the training
of the logistic regression classifier are analogous to the ones
used for calibration. The approach of estimating the classifier
parameters based on calibration runs followed by training runs
and subsequent re-estimation of the parameters encompasses
both: development and strengthening of the features identified
in the calibration run and also adjusting of the classifier
parameters as the motor imagery patterns of the user evolve.
This approach is meant also to help the subject in transition
from synchronous calibration mode to truly asynchronous
operation.

3) Online Classification Algorithm: The classification pro-
cedure operates in asynchronous mode. The BCI2000 system
delivers a chunk of data in regular time intervals. These data
are stored in a first-in-first-out (FIFO) buffer of the same length
as used for time intervals by joint diagonalization procedure
(in our case 2 s). The classification is based on the content
of this buffer. The flowchart of the algorithm is presented in
Fig. 1. The classification procedure consists of three stages:

a) Preprocessing: The data from the current FIFO buffer
is transformed into features according to (4)–(7). As a result
a full set of features is available.

 FIFO buffer (2 s)

Project data 
with Pμ  

Project data 
with Pβ 

Compute log power 
spectrum in specific 

frequency bands 

Select features 
NC vs ICLH

Select features 
NC vs ICF
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NC vs ICRH

Close to 
featurescalib?

Close to 
featurescalib?

Close to 
featurescalib?

is ICLH?

Yes Yes

is ICF?

Yes

is ICRH?

at least one IC?

Yes Yes Yes

NC
No

Yes

Select features discriminating 
between IC classes

Yes
Classify 

IC NC

LH F RH

Close to 
featurescalib? NCNo

Compute log power 
spectrum in specific 

frequency bands 

Fig. 1. Flowchart representing the decisions taken in the classification
algorithm.

b) NC vs IC classification: At this point a decision as
to whether the current FIFO buffer represents NC or some IC
state is taken. For every ICk class the following procedure is
repeated:
• From the full feature set select the features identified to

discriminate given ICk state from the NC state.
• Check if the reduced feature vector of the data in the

current FIFO buffer is close to the corresponding vectors
obtained in calibration run. To accomplish this: Compute
the Mahalanobis distances between the reduced feature
vector and the corresponding vectors from the calibration
run from the ICk and from the NC state. If both MDs
are larger than 97.5 quantile of the χ2

ν distribution with
ν degrees of freedom, where the number of degrees of
freedom equals the dimension of reduced feature space,
label the data as “unknown.” Otherwise proceed to the
next step.

• Apply the corresponding two-class logistic regression
classifier. As a result the data are labeled as belonging
to one of the classes: currently analyzed ICk class, NC
or “unknown.” The “unknown” label is assigned in case
when none of the probabilities of the data belonging to
one of the classes passes the threshold defined as 0.5 plus
the error of probability estimation.

After all IC classes have been checked the current FIFO buffer
may have two possible types of label sets:
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• all labels “unknown” or NC
• at least one label indicating IC state

For “unknown” or NC, the classification finishes at this
stage and the current FIFO buffer is assigned the NC class.
Otherwise, proceed with the second stage of classification.

c) Motor imagery classification: In this step, a decision
is taken about the MI class that represents the current FIFO
buffer. A procedure analogous to the one in previous stage is
followed:
• From the full feature set select the features identified to

discriminate between IC classes.
• Check if the features of the data in the current FIFO

buffer are in the correct range. The Mahalanobis distance
between the reduced feature vector and the corresponding
set of reduced feature vectors from the calibration run
representing the IC intervals should not be larger than
the 97.5 quantile of the χ2

ν distribution with ν degrees of
freedom, where the number of degrees of freedom equals
the dimension of reduced feature space. If the MD is too
large the data is labeled as “unknown.” Otherwise proceed
to the next step.

• Apply the logistic regression classifier. As a result, the
data is labeled as belonging to one of the IC classes:
LH, RH or F, or as “unknown.” The “unknown” label is
assigned in case when none of the probabilities of the
data belonging to one of the classes, i.e., does not pass
the threshold defined as 0.5 plus the error of probability
estimation. The “unknown” label is treated as NC.

B. Neurofeedback Interfaces

The neurofeedback interface is the component of the BCI
system that provides user interaction. This interface is ob-
served by the user during interaction to perform mental tasks
and obtain performance feedback about the correct or incorrect
response of BCI system. In the proposed system, the two
neurofeedback interfaces are available: a training interface and
a virtual maze. The training interface has elements typical
for synchronous BCI. The system indicates the movement
to be imagined, but the classification procedures don’t use
the information about the cue or time since the beginning of
the trial. The virtual maze works completely asynchronous,
the user decides when to initiate the MI. Both interfaces are
described in detail in the following subsections.

1) Training interface: This interface supplies cues for
performing mental tasks and translates the logical control
signals produced by the classifier into a graphical signal
representation. The aim of this interface is to support users to
improve control over the modulation of their neural activity,
and teach them the brain-signal control, which is needed later
to interact with a device (e.g. maze) via BCI. Learning to op-
erate a BCI based on the modulation of sensorimotor rhythms
requires repeated practice with feedback and reward [12].
Fig. 2 presents the training interface used to train users. The
display contains three targets: left, up and right, each one
corresponding to one of the following mental tasks: left hand,
both feet and right hand imagery of movement, respectively.
This training interface operates in a trial-based paradigm, i.e.,

70%

Fig. 2. The display used for user training of three motor imagery tasks. This
interface provides feedback about the classifier result every 125 ms. Each
stripe represents a classification.

it supplies blocks of randomized sequences of target codes
(cues) for performing mental tasks. These sequences proceed
in phases; each trial consists of a PreFeedback, Feedback,
and Postfeedback phase, which is followed by an inter-trial
interval (ITI). PreFeedback indicates the user’s task, i.e., to
select the indicated target icon by imagining the corresponding
movement. During Feedback, the result of the classification
of the different subject intentions is visually fed back to
the user. The classification of user actions and feedback are
performed continuously (the incoming data block is analyzed
continuously). The indicators (stripes) on each of the icons
represent a result of single classification of the subject state
as one of the IC classes. It means that the system has detected
that the subject is not in an NC state and was able to assign an
IC class to the current data buffer. Only when a desired number
of stripes are collected, the selection of the icon is performed.
The selection of a target occurs during PostFeedbak when
an arrow reaches the desired level, then the chosen target
changes color to confirm selection. For the feedback phase
there is maximum time to perform the imagination. If no
selection is performed within the maximum feedback duration,
the selection is aborted. Positive or negative feedback (visual
and acoustic) is presented to the user depending on the result
of the selection. When the selected icon is the one suggested
by the cue, the icon is colored green and the message “You
got it” is displayed on it. This situation is called a hit. For a
miss, i.e., when the selected icon differs from the suggested
one, the selected icon color turns red and the message “Try
again” appears on it. During the ITI the subject is requested
to rest. A training session consists of several trials.

2) Virtual maze: The virtual maze is an asynchronous
interface. The user performs the imagination of movements
in a self-paced manner and has the opportunity to correct or
modify his/her behavior based on the continuous feedback. At
the beginning of each run, the cursor is located at the “Start”
position. The subject’s task is to navigate the cursor through
the maze until the “Finish” position is reached (see Fig. 3).
The “move forward” (MI feet) command moves the cursor
to the next position in the maze. Commands “turn left” (MI
left hand) and “turn right” (MI right hand) rotate the cursor
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Fig. 3. Virtual maze application. At the beginning of each run, the cursor
is located at the “start” position. With “move forward” command the cursor
moves to the next position in the maze. With commands “turn left” and “turn
right” the cursor rotates by 90 degrees to the left and to the right, respectively.

by 90 degrees to the left and to the right, respectively. A run
starts with “move forward” command. From this position, the
minimum of 19 commands is needed in order to reach the
final position. The run ends automatically after the cursor has
reached the “Finish” position.

C. Subjects

A total of eight able-bodied subjects were recruited for the
evaluation of the MI-BCI system. First, five participants (aged
24.2 ± 4.5 years; 4 women and 1 male) were recruited for
the training study, each knowing that they would be required
to undertake several phases of recording which would include
calibration and training. In total four sessions were recorded
on four different days. Two of the subjects who participated in
the training study and three new subjects agreed to participate
in the application study (aged 25.8± 3.8 years; 3 women and
2 male). They undertook calibration runs, followed by training
runs and finally they controlled the virtual maze via BCI. All
was done in one single session. All subjects were right-handed,
had normal or corrected to normal vision. According to self-
reports, Subject H suffered from acusticus neurinom. Six of
the subjects had no prior experience with BCI. Two subjects
had experience with SSVEP-BCI (Subjects A and E) and one
with MI-BCI (Subject A).

D. Data Collection

Data were recorded from the surface of the scalp via
16 sintered Ag/Ag-Cl EEG electrodes. They were placed
on AFZ for ground and FZ , FC3, FCz, FC4, C5, C3, C1, Cz,
C2, C4, C6, CP3, CPz, CP4, Pz as the input electrodes on the
10–10 international system of EEG measurement [26]. All
impedances were kept below 5 KΩ. An EEG amplifier Porti32
(Twente Medical Systems International, Oldenzaal, Nether-
lands) was used for these experiments. The Porti32 amplifier

records unipolar inputs configured as the reference amplifier,
i.e., all channels are amplified against the average of all
connected inputs. The signals were digitized with a sampling
rate of 256 Hz and transmitted to the computer by means of a
bi-directional glass fibre. The Porti32 was then connected to
the USB port of a desktop quad core computer running the
BCI2000 general software framework [18]. BCI2000 consists
of four modules: source, signal processing, application and
operator. The operator used was the release provided by the
BCI2000 developers; all other modules were reimplemented
by the authors. The source module acquired signals from
the Porti32 amplifier in blocks of 32 samples and applied
a high-pass filter at 0.1 Hz to reduce signal offset and a
notch filter at 50 Hz to reduce the power line noise. The
acquired signals were then transmitted to the signal processing
module, which collected the EEG signals in segments of 2
seconds, the data buffer for data processing. The buffer’s
overlap was 125 ms. The signal processing module implements
the methodology presented in section II-A3 using the Matlab
interface of BCI2000. The training interface and virtual maze
were implemented as external modules in C++. They received
control signals from BCI2000 via the User Datagram Protocol
(UDP).

E. Experimental Protocol

1) Training study: Subjects participated in four training
sessions on different recording days. The first session started
for all subjects with four calibration runs consisting of 30
trials each (120 trials in total). The number of trials per task
was the same for all tasks in a run (10 trials). The mental
tasks were the mental imagination of the right hand, left hand
and feet movement. The subject were asked to avoid the limb
movements during imagination task. After each calibration
run, a break of five minutes followed. During a calibration
run, the display initially showed three icons in form of arrows
colored light gray, and pointing left, up and right. Each trial
started when one of the icons changed its color to blue
indicating the mental task to perform. The target cue was
displayed on the screen for four seconds. The time between
the trials (ITI) was five seconds. Subjects were instructed to
imagine left/right hand or feet movements according to the cue
presented on the screen as shown in Fig. 4a. Specifically, they
were given the instruction to imagine the continuous opening
and closing of the left/right hand (left/right arrow), and to
imagine to grip an object with both feet (up arrow). The data
recorded from the four calibration runs were concatenated
in a single file, which was given as input argument to the
procedure described in II-A1. This step was necessary to adapt
the classifier parameters to the individual user. Subject-specific
parameters, like µ and β frequency bands, transformation
matrix P̂ and significant features were used to train the logistic
regression classifier. The created classifier was applied to the
calibration data to estimate the quality of classification. All
the correct estimated trials were stored in a database. After
calibration, subjects proceeded with at least three training runs
with feedback (30 trials per run). The intent of the training was
to improve the user’s skill level. A training run proceeded in
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Fig. 4. Trial-based paradigm for calibration and training. In both, cue stimulus in form of arrows pointing left/right/up indicated the subject the kind of
imagination to perform left hand/right hand/feet, respectively. (a) For calibration, subjects performed the imagination continuously for four seconds, no feedback
was provided. (b) For training, subjects were instructed to perform the imagination until the corresponding arrow was completely filled (six indicators). A
maximum of 15 seconds was given to the user to complete the task.

phases as explained in section II-B1. The PreFeedback time
of 1 second indicated the subject to be ready for the trial.
In the feedback phase, subjects were instructed to perform
the desired motor imagery task until the corresponding arrow
was filled with six indicators (counted as a hit), another arrow
was filled (counted as a miss), or the maximum feedback
duration of 15 seconds expired (counted as an invalid trial).
The PostFeedback phase showed the result of the selection
for 1 second. The interval between the trials was 5 seconds.
Fig. 4b shows the timing of the training run. The subject-
dependent classifier was recalibrated whenever was possible,
i.e., if enough correct classified trials were available from the
training runs. The recalibration was done using the procedure
described in II-A2. All correct trials were stored again in the
database for each subject. The next three training sessions
consisted of six training runs unless a new calibration was
required. That depended on the performance of the subject.
If a calibration was conducted, then three training runs were
available.

2) Application study: The objective of this study was to
demonstrate direct brain control, i.e., the normal activity of
a user performing tasks in an (unconstrained) environment.
The interface paradigm was object positioning through virtual
manipulation and the temporal control paradigm was self-
paced (continuously available–idling supported). Before the
run with the virtual maze could begin, the BCI system was
first fitted to the specific individual. Subjects had to perform
four calibration runs and three training runs. The paradigm,
timing and the number of trials for calibration and training
runs were configured as in the training study. The subject-
specific parameters of the classifier were estimated based on
data recorded during calibration runs. The data from two
training runs was used to update the classifier. This update
compensated the changes in the signals between runs from the
calibration and training. The third training run and application
run were performed using the adjusted classifier. For the
application run, the participants used the asynchronous MI-
BCI to navigate the cursor through the maze. The virtual
maze provided the user with a continuous visual feedback.
The classifier output in the form of red dots were used as
feedback: dots ahead of the cursor for feet MI, on the left/right
side of cursor for left/right hand MI (see Fig. 3). To move the
cursor, the user had to perform imagination until eight dots
were collected. The run ended when the cursor was located at

the “Finish” position in the maze. All runs were performed on
the same day with an intermediate break of a few minutes. The
entire procedure took about one hour on average per subject.

F. Measures of BCI Performance

The performance of a BCI system is usually assessed
by the calculation of the classification accuracy (ACC) and
information transfer rate (ITR). To measure the performance
of classification in training runs, we calculated the specific
accuracy for each class i, as:

ACCi = 100× hitsi
trialsi

. (8)

The ITR measures the rate at which information is successfully
transmitted from the user, through the BCI channel, to the
application [27]. For application runs with the virtual maze,
the ITR was calculated based on the following formula:

B = log2N + P log2 P + (1− P ) log2

(
1− P
N − 1

)
. (9)

In this formula, B represents the number of bits per trial,
P represents the probability of correct classification and N
is the number of choices. ITR was calculated on the basis
of the stages necessary to reach the goal, i.e., the low level
commands sent to the transducer. This lead to an N of 3,
based on the 3 movement commands (“turn left,” “move
forward” and “turn right”). P was calculated as the number
of all correct commands (hits) divided by the total number of
executed commands (trials). To obtain ITR in bits per minute,
B was multiplied by the speed, i.e., the number of executed
commands divided by the total duration of the run (time). The
three variables hits, trials and time required to calculate ITR
were calculated online directly in the maze software. The total
time was measured as the elapsed time since the cursor left
the “Start” position (indicated by the first command “move
forward”) until reaching the “Finish” position. Each executed
command was rated as correct or incorrect by comparing the
current cursor position and direction of the cursor, with the
next target position. For example, after leaving the “Start”
position, only the “move forward” command, is correct, all
other commands are treated as incorrect for the calculation of
accuracy. If the cursor was facing a wall, and “move forward”
command was executed, the command was also counted (as
incorrect), but the cursor did not move forward. The user could
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choose one of the two paths to reach the goal. Both paths were
valid. Furthermore, for the application study we evaluated the
mean time needed to issue a correct movement command
denoted as t̄hit. The time periods used for this calculation were
counted from the previous to the subsequent cursor movement.

III. RESULTS

A. Training study

Table I summarizes the results obtained in the training study
with five subjects. This table presents the specific accuracy
for each motor imagery class and the overall mean accuracy
achieved in each training session. A session is constituted
by several training runs with 30 trials each. Additionally, the
best training run for each subject with the maximum accuracy
is highlighted. The accuracy was defined as the percentage
of correct trials divided by the total number of trials (valid
and invalid trials). An invalid trial was considered when the
subject did not reach the desired level of indicators for any
of the classes during the maximum feedback duration. Only
the periods of time in which the user was engaged with the
imagination of movements were evaluated, i.e., during the
feedback phase. During the ITI period, the subject did not
received feedback and was instructed to rest and to prepare
for the next trial. These results of accuracy for each class
helped the operator to decide when to recalibrate the system.
This procedure was not straightforward, it depended on the
subject’s performance and therefore different for most of the
participants. Subjects A and B only required a calibration
of the system in the first session. For the next sessions, the
original classifier settings were only updated always after each
training run using the function described in II-A2. Subject C
required a recalibration in session S4 as the accuracy for right
hand imagination dropped to 3.3% in session S3. Similarly,
Subject D required a recalibration in session S3 as the classifier
was not detecting feet imagination in session S2. Subject E
required a new calibration of the system at the beginning of
session S1 to S3. Only for session S4, an update was sufficient
BCI operation. Fig. 5a presents the BCI performance for a
representative subject (B) in the course of the training sessions.
Subject B completed three feedback runs (90 trials) in the first
session and six feedback runs (180 trials) in each of the next
training sessions. This figure shows clear variations across
the training runs. Subject B could increased his accuracy
from 64.4% to 74.4%. Fig. 5b shows the learning curves
for each subject during four training sessions. These results
show considerable intersubject differences, as widely reported
in other BCI studies [28].

B. Application study

The results of the application study are presented in Table II.
This table shows the results of the training runs and the
application run with the virtual maze. The results of the
training runs are presented in the same form as in the training
study. For the run with the virtual maze, four measures of per-
formance were available: accuracy (hits/trials), overall time for
the maze task, mean time needed to issue a correct movement
command

(
thits

)
and ITR. The calculation of information

TABLE I
TRAINING STUDY: RESULTS OF FIVE SUBJECTS DURING FOUR TRAINING

SESSIONS

Subject Session ACCi [%] Mean
LH F RH accuracy [%]

A

S1∗ 55.0 63.3 83.3 67.2
S2 50.0 70.0 85.0 68.3
S3 46.7 70.0 85.0 67.2
S4 60.0 66.7 91.7 72.8

Mean 52.9 67.5 86.3 68.9
Max 70.0 70.0 100.0 80.0

B

S1∗ 40.0 90.0 63.3 64.4
S2 56.7 53.3 83.3 64.4
S3 65.0 53.3 85.0 67.8
S4 78.3 75.0 70.0 74.4

Mean 60.0 67.9 75.4 67.8
Max 80.0 80.0 100.0 86.7

C

S1∗ 40.0 90.0 55.0 61.7
S2 78.3 93.3 6.7 59.4
S3 100.0 70.0 3.3 57.8

S4∗ 80.0 66.7 33.3 60.0
Mean 74.6 80.0 24.6 59.7
Max 70.0 90.0 80.0 80.0

D

S1∗ 12.5 37.5 87.5 45.8
S2 71.7 0.0 43.3 38.3

S3∗ 56.0 48.0 78.0 60.7
S4 68.3 26.7 78.3 57.8

Mean 52.1 28.0 71.8 50.7
Max 70.0 80.0 60.0 70.0

E

S1∗ 20.0 30.0 5.0 18.3
S2∗ 16.7 53.3 20.0 30.0
S3∗ 53.3 30.0 45.0 42.8
S4 66.7 71.7 18.3 54.2

Mean 39.2 46.3 22.1 35.8
Max 100.0 80.0 0.0 60.0

∗ This session started with a calibration of the system

transfer rate was specified by using the formula described
in II-F. Subjects achieved a mean information transfer rate
of 4.51 bit/min and a mean accuracy of 74.84%. The time
needed to complete the task was 5.27 minutes on average. The
subjects spent on each correct movement command 8.81 s on
average. The mean number of commands required to navigate
the cursor to the final position was 35.6, what significantly
differs from best case scenario with only 19 commands. This
can be explained by the maze layout: A false command at
some places in the maze must be corrected by three following
commands.
Subject A achieved the maximum ITR of 8.00 bit/min and
accuracy of 81.8% and could finish the task in only 2.97
minutes. From the table, it can be observed that Subject H
could achieve an overall accuracy of 70% although one of
the conditions was very week. This was possible by avoiding
turning left. Results from subjects F, G and H are remarkable
as they used the system for the first time and had no prior
experience with BCIs.

IV. DISCUSSION

The main contribution of this work is the development of
a multiclass asynchronous BCI based on motor imagery, in
which the selection of individual characteristics of each user
and update of the classifier settings using data from the training
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Fig. 5. Classification accuracy during training sessions. (a) Performance of
a representative subject in the course of four training sessions. The training
runs in one session were acquired the same recorded day. The thick line is
the mean accuracy in %. (b) Mean accuracy for each subject in the course of
four training sessions.

TABLE II
APPLICATION STUDY: RESULTS OF THE TRAINING AND APPLICATION

RUNS FOR FIVE SUBJECTS

Subject
Training runs Application run
ACCi [%] ACC [%] Time [min] ITR

LH F RH (hits/trials) (thits [s]) [bit/min]

A 60.0 90.0 50.0 81.8 2.97 8.00(27/33) (5.57)

E 13.3 73.3 66.7 77.4 4.78 3.82(24/31) (9.29)

F 73.3 56.7 86.7 76.2 3.97 5.87(32/42) (5.29)

G 30.0 56.7 10.0 68.8 10.28 1.17(22/32) (17.54)

H 6.7 96.7 60.0 70.0 4.35 3.71(28/40) (6.42)

Mean 36.7 74.7 54.7 74.84 5.27 4.51(26.6/35.6) (8.81)

sessions is done fully automatic by the software. This may
reduce the complexity of this paradigm for non BCI experts
who intend using the system outside the laboratory. The
performance data show that this MI-BCI system could provide
effective control for all five subjects participating in the
application study (trained and untrained). In this section, two
main characteristics of the BCI are evaluated, the automatic

selection of subject-specific parameters and the multiclass
detection, which makes an important contribution to the BCI
state-of-the-art. Finally, the current trends in MI-BCIs are
assessed.

A. Automatic selection of subject-specific parameters

The brain oscillations related to the imagination of limb
movement varies from one subject to another. As a result,
the BCI system must be adapted individually to each user.
To our knowledge, most MI-based BCI systems the features
were selected manually based on the visual analysis of time-
frequency-spatial properties of the signals by experts. This
procedure is extremely time-consuming and requires an ex-
pert with technical and scientific knowledge of BCIs. Today,
there exists only few papers ( [29], [30]), which address the
automatic or semi-automatic feature selection. In this paper a
solution which automates most of these tasks is proposed:
• adjustment of the individual frequency-bands,
• selection of optimal linear combination of available chan-

nels,
• selection of relevant and not redundant set of features for

motor-imagery classification,
• search for the best time interval for training of two stage

logistic regression classifier.
The results showed that with the automatic calibration, the
subjects in this study were able to achieve a good accuracy
already in the first session (> 70%).

B. Multiclass MI-BCI

The mainstream of research has been focused on the devel-
opment of signal processing methods that improve the feature
extraction and/or classification [31]–[34]. The research pre-
sented in these papers has been done with offline data analysis
using EEG data that were previously recorded. A comparison
of performance of many different algorithms on the same data
sets can be found at http://www.bbci.de/competition/iv/results/
index.html. Today, there exists only few studies, which have
investigated the performance of three or more MI classes.
Scherer et al., [35] used the smiley paradigm as a cue-
based training interface for three-class MI-BCI. Three subjects
achieved the mean classification accuracies of 75%, 80% and
60% during feedback training. Galán et al., [5] and Milán
et al., [36] combined motor imagery BCI with other mental
tasks like words association, cube rotation and subtraction. In
our work, we demonstrate that three class control is possible.
Although two subjects (E and H) had problems with a third
MI class. This results also suggest that the BCI application
should be adapted to the user according the number of MI
classes.

C. Current trends in MI-BCI research

Recently, there is an increase interest in systems work-
ing asynchronously. Basically, two directions of development
within this paradigm can be identified. One is the minimalistic
approach with as few electrodes as possible and simple signal
processing. This line of development is aimed at construction
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of robust “brain switch” [37], [38]. The other direction is
aimed at the construction of a system that can be operated
in an asynchronous way and is able to distinguish multiple
classes of MI. This direction needs more sophisticated signal
processing and additional electrodes. It is common for this
approach to divide the classification process into two stages:
the classification of the NC vs IC state, and in case IC
state was detected the second stage classifier determined the
actual IC state. Of course, the increase of classes impairs the
classification accuracy. Despite this using more classes has the
potential to increase information transfer rate.

In general, there are two main concepts of the cooperation
of the user with the computer. The first idea, “let the machines
learn” promotes the approach in which the machine learning
algorithms are meant to adjust classification to the patterns
generated by user in the calibration session. The fact that
users patterns may evolve during the usage of the system
is neglected. In the opposite idea, “let the user learn,” the
subject has to train in neurofeedback sessions the generation
of patterns hardwired in the system. The system proposed
in this paper utilizes both concepts. The features and the
classifier parameters are set with the help of machine learning.
The evolution of the pattern generated by the user and a
reestimation of the parameters after each training session
are utilized. The reestimation uses all the data that was
correctly classified in all performed sessions. The fact that
only the correctly classified data is used to update of the
parameters has two positive consequences. First, it encourages
the user to strengthen the classifiable patterns. Second, if the
patterns evolve during the training sessions, the reestimation
of the classification parameters allows system to capture the
changes. The learning curves of most of the subjects show a
positive effect on the performance. This could be explained
by the incremental update of the classifier parameters and the
development of successful strategies by the subject.

V. CONCLUSION

An asynchronous BCI system tailored for detecting
ERD/ERS changes in online EEG data has been presented.
The signal processing methodology automatically selects user-
dependent parameters from calibration data and allows the
incremental update of those parameters based on data recorded
from synchronous training sessions prior to operation. When
using the system to navigate a cursor along a virtual maze, a
good performance in terms of accuracy (74.84%) and infor-
mation transfer rate (4.51 bit/min) was achieved. This result is
comparable with systems that instead require experts to select
the optimal user parameters. This research facilitates BCIs that
can adapt to each user with little or no expert help.

APPENDIX A
BLIND SOURCE SEPARATION BY APPROXIMATED JOINT

DIAGONALIZATION

The problem of finding the demixing matrix P̂ in (2) can be
formulated with the formalism of general joint diagonalization.
Let us consider the spatial covariance matrix of the mixed
signals x[t]:

Cx = E
{
x[t]x[t]T

}
(10)

where the expectation is taken over time t. Substituting (1) to
(10) we obtain:

Cx = E
{
As[t] (As[t])

T
}

= AE
{
s[t]s[t]T

}
AT = ACsA

T

(11)
For independent sources the off-diagonal elements of matrix
Cs should be zero. Thus the matrix P has the property that
it diagonalizes the signal covariance matrix Cx:

Â−1Cx

(
ÂT
)−1

= P̂CxP̂
T = Cs (12)

This property can be used to estimate the matrix P from the
data. The above derivation is often applied in the construction
of spatial filters for BCIs. Let’s assume that:
• there are K different MI classes—corresponding to imag-

inations of movement of different limbs,
• the spatio-temporal pattern of band power modulation for

each of the classes is related to the same set of sources
related to motor imagery, but the modulations of activity
of different subsets of these sources are specific for each
motor imagery.

• the time course of the power modulation can be split into
intervals in which the data are quasi-stationary.

Then the transformation P̂, which jointly diagonalizes the
covariance matrices and which is estimated for all quasi-
stationary intervals of the motor imagery epochs, is an ap-
proximation of the demixing matrix P [31].

APPENDIX B
FREQUENCY-AMPLITUDE-DAMPING DECOMPOSITION OF

AN AUTOREGRESSIVE MODEL

Let’s consider an autoregressive model of the form:

x[n] =

p∑
i=1

a[i]x[n− i] + e[n] (13)

where x[i] is the value of the i-th sample, a[i]—the i-th
coefficient of AR model, e[n]— random component, p—the
order of the AR model. After applying the Z-transform to (13)
we get:

x[z] =

p∑
i=1

a[i]x[z]z−i + e[z] (14)

This equation can be solved for x[z]:

x[z] =
e[z]

1−
∑p
i=1 a[i]z−i

= h[z]e[z] (15)

where
h[z] =

1

1−
∑p
i=1 a[i]z−i

(16)

is called the transfer function of the autoregressive model. The
poles of the transfer function are connected with the maxima in
the power spectrum [39], thus they correspond to the relevant
rhythms present in the signal. Under the assumption that h[z]
has only single poles3, (16) may be written in the form:

h[z] =

p∑
j=1

Cj
z

z − zj
(17)

3Multiple poles might happen in the EEG signal, when order of model is
overestimated
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where zj is the j-th pole of h[z] ,

Cj = lim
z→zj

(z − zj)h[z]

z

By means of the zj and Cj coefficients, the spectral peak
parameters: mean frequency, bandwidth, amplitude and phase,
may be estimated. The frequency of the j-th oscillation is:

ωj = imag(αj)
fs
2π

(18)

where fs—sampling frequency, αj = ln (zj)
The full width at half maximum (FWHM) of the corre-

sponding spectral peak is proportional to 2βj , where βj is:

βj = −real(αj)
fs
2π

(19)

APPENDIX C
MULTITAPER METHOD

The multitaper method (MTM) described in [40], uses
a sequence of windows that are orthogonal to each other
(discrete prolate spheroidal sequences). Each window is used
to compute the windowed periodogram of the signal. Subse-
quently the periodograms are averaged.

In the current paper we use a number of windows in the
sequence, Nw, which is related to the length of the time
window ∆t and to the width, ∆f , of a spectral peak estimated
by means of FAD:

Nw = 2∆t∆f − 1 (20)

The width of the spectral peak ∆f is constrained not to be
lower than the spectral resolution of the periodogram ( 1

∆f ).

APPENDIX D
REDUCTION OF FEATURE SPACE DIMENSIONALITY

Mutual information I(X;Y ) measures the amount of infor-
mation shared by random variables X and Y . Formally, for
discrete random variables it is defined as:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p1(x)p2(y)
(21)

where p(x, y) is the joint probability distribution of X and Y ,
and p1(x) and p2(y) are the marginal probability distribution
functions of X and Y respectively. We will designate features
as X and class label as Y . Let the classifier function g(X)
assign a class label to feature. The minimal achievable classi-
fication error is bounded by two inequalities, lower bound is
the Fano’s inequality [41], and the upper bound is half of the
conditional entropy [42]:

H(Y )− I(X;Y )− 1

log |Y |
≤ P (g(X) 6= Y ) ≤ 1

2
H(Y |X) (22)

where H is the information entropy and |Y | is the number
of elements in Y . The left inequality indicates that the maxi-
mization of mutual information minimizes the bound. Whether
the minimum can be reached depends on the classification
function g(X). For a set of features X = {X1, . . . , Xn} the
selection of features should aim at maximization of the joint
mutual information I(X1:n;Y ). Unfortunately, the evaluation

of joint mutual information involves high dimensional distri-
butions, which in practical cases cannot be estimated reliably.
The Shannon mutual information can be expanded into a sum
of interaction information terms over all possible subsets T
drawn from S [42]:

I(X1:n;Y ) =
∑
T⊆X

I({T ∪ Y }), |T | ≥ 1 (23)

Keeping only terms for |T | ≤ 2 is equivalent to assume that
there are only conditional and unconditional pairwise relations,
and no higher order relations. Such a truncated expansion can
be used to form a ranking measure:

Jn = I(Xn;Y )− β
n−1∑
k=1

I(Xn;Xk) (24)

The above formula includes the objective term I(Xn;Y ) to en-
sure feature relevance and the penalty term

∑n−1
k=1 I(Xn;Xk)

to enforce low feature redundancy. We used the formula (24)
with β = 1

n−1 . Such a formula was proposed by Peng
et al. [43] as Maximum Relevance Minimum Redundancy
(MRMR). It can be understood as taking the mean of the
redundancy terms. In the iterative way consecutive features
with the highest ranking J are selected. The iterations are
stopped at k for which Jk < 0. To improve the generalization
of the classifier on a new data set, the list of selected
features is truncated at the number corresponding to 10%
of the number of available calibration trials. Our numerical
experiments confirm in this respect results obtained by [44].

To make use of criterion (24), we need to estimate the
probabilities in formula (21). Due to the limited number of
MI realizations, the values of features need to be quantized.
Based on our numerical experiments we decided that the
maximal number of quantization levels should not exceed 5%
of available observations.

APPENDIX E
MAHALANOBIS DISTANCE

Mahalanobis distance [45] is a distance measure in a multi-
dimentional vector space. It can be used to determine similarity
of a vector x = {x1, x2, . . . , xn} to a given set of vectors A. It
differs from Euclidean distance in that it takes into account the
correlation structure of the vector set A and is scale-invariant.
The Mahalanobis distance is defined in the following way:

d =
√

(x− µA)TC−1(x− µA) (25)

where µA = {µ1, µ2, . . . , µn} is the mean vector averaged
over the group of the vectors in A, C — covariance matrix of
vectors in A.

Mahalanobis distance can be defined also to measure the
distance between two sets of vectors A and B:

d =
√

(µA − µB)TC−1(µA − µB) (26)

where: µA = {µA1 , µA2 , . . . , µAn } and µB = {µB1 , µB2 , . . . , µBn }
represents the means of the vectors from set A and B
respectively. C is the joint covariance matrix:

C =
nACA + nBCB
nA + nB − 2

(27)
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where CA, CB the covariance matrixes of the distributions of
the vectors belonging to set A and B respectively.
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