TI/Sztuczna Inteligencja: Różnice pomiędzy wersjami

Z Brain-wiki
(Utworzono nową stronę "==[https://drive.google.com/file/d/16vgyKQO1loeaE_E0UmlGr_B5nsGhoEp_ Slajdy]== ==Historia== Choć "Sztuczna Inteligencja" to termin niezwykle popularny w ostatnich lat...")
 
Linia 10: Linia 10:
  
 
Boom na głębokie sieci neuronowe zapoczątkowała głęboka sieć neuronowa [https://en.wikipedia.org/wiki/AlexNet AlexNet], która w roku 2012 uzyskała wyniki znacznie przewyższające wszystkie dotychczasowe podejścia z zakresu rozpoznawania obrazów (ang. computer vision). Metodologia używana w uczeniu tej sieci sama w sobie nie była rewolucyjna; przełom spowodowały przede wszystkim dwa czynniki:
 
Boom na głębokie sieci neuronowe zapoczątkowała głęboka sieć neuronowa [https://en.wikipedia.org/wiki/AlexNet AlexNet], która w roku 2012 uzyskała wyniki znacznie przewyższające wszystkie dotychczasowe podejścia z zakresu rozpoznawania obrazów (ang. computer vision). Metodologia używana w uczeniu tej sieci sama w sobie nie była rewolucyjna; przełom spowodowały przede wszystkim dwa czynniki:
# Dostępność (w [[TI/Internet_od_%C5%9Brodka|Internecie]] ogromnej ilości zdjęć, na podstawie których prof. [https://en.wikipedia.org/wiki/Fei-Fei_Li Fei Fei Li] doprowadziła do powstania ogromnej bazy danych obrazów z oznaczeniami — [https://en.wikipedia.org/wiki/ImageNet ImageNet]. Sieci neuronowe uczone na mniejszej ilości danych nie dawały tak dobrych rezultatów.
+
# Dostępność (w [[TI/Internet_od_%C5%9Brodka|Internecie]]) ogromnej ilości zdjęć, na podstawie których prof. [https://en.wikipedia.org/wiki/Fei-Fei_Li Fei Fei Li] doprowadziła do powstania ogromnej bazy danych obrazów z oznaczeniami — [https://en.wikipedia.org/wiki/ImageNet ImageNet]. Sieci neuronowe uczone na mniejszej ilości danych nie dawały tak dobrych rezultatów.
 
# Dostępność ogromych mocy obliczeniowych, w szczególności specjalizowanych procesorów do obliczeń graficznych (graphical processing units, GPU), których szybkość i wbudowana równoległość dramatycznie przyspieszyły proces uczenia sieci.
 
# Dostępność ogromych mocy obliczeniowych, w szczególności specjalizowanych procesorów do obliczeń graficznych (graphical processing units, GPU), których szybkość i wbudowana równoległość dramatycznie przyspieszyły proces uczenia sieci.
 
  
 
==Główne cechy współczesnych systemów AI, opartych na uczeniu maszynowym==
 
==Główne cechy współczesnych systemów AI, opartych na uczeniu maszynowym==

Wersja z 15:57, 19 lip 2024

Slajdy

Historia

Choć "Sztuczna Inteligencja" to termin niezwykle popularny w ostatnich latach, trudno jednoznacznie ustalić, czego tak naprawdę dotyczy. Powszechnie opisuje się pod tym hasłem starsze i nowsze metody uczenia maszynowego, szczególnie za pomocą sztucznych sieci neuronowych, jednak stosowanie tych znanych od lat technik nie uzasadnia wrowadzania nowego terminu. Dlatego powstał też termin "silna (ew. "ogólna") sztuczna inteligencja", (ang. strong AI lub artificial general intelligence, AGI).

Eksplozję zainteresowania tym terminem spowodowało udostępnienie przez kilka wielkich firm dużych modeli językowych (ang. Large Language Models, LLM), choć wydaje się, że na razie nie osiągnęły one jeszcze poziomu AGI.

Boom na głębokie sieci neuronowe zapoczątkowała głęboka sieć neuronowa AlexNet, która w roku 2012 uzyskała wyniki znacznie przewyższające wszystkie dotychczasowe podejścia z zakresu rozpoznawania obrazów (ang. computer vision). Metodologia używana w uczeniu tej sieci sama w sobie nie była rewolucyjna; przełom spowodowały przede wszystkim dwa czynniki:

  1. Dostępność (w Internecie) ogromnej ilości zdjęć, na podstawie których prof. Fei Fei Li doprowadziła do powstania ogromnej bazy danych obrazów z oznaczeniami — ImageNet. Sieci neuronowe uczone na mniejszej ilości danych nie dawały tak dobrych rezultatów.
  2. Dostępność ogromych mocy obliczeniowych, w szczególności specjalizowanych procesorów do obliczeń graficznych (graphical processing units, GPU), których szybkość i wbudowana równoległość dramatycznie przyspieszyły proces uczenia sieci.

Główne cechy współczesnych systemów AI, opartych na uczeniu maszynowym

Jak pokazywaliśmy w poprzednich rozdziałach o uczeniu maszynowym i sztucznych sieciach neuronowych, choć sam proces uczenia sieci oraz działanie gotowych systemów jest realizowane w postaci programów komputerowych, to konkretne wartości parametrów decydujących o działaniu systemu (głównie wagi połączeń nauczonej sieci) ustalane są przez algorytm na podstawie danych uczących. Taki system nie realizuje więc ściśle znanego i zaprojektowanego przez człowieka algorytmu — jest optymalizowany dla zwracania odpowiedzi najlepiej odpowiadających zawartości zbioru uczącego. Liczby parametrów współczesnych modeli przekraczają 109, a liczba przykładów, na których są trenowane, 1013. Nie potrafimy interpretować znaczenia tych parametrów, ani też kontrolować jakości zbiorów uczących.

Niektóre problemy

  • Jakość LLM, mierzona "błyskotliwością i trafnością" (na razie nie wszystkich) odpowiedzi, zależy dramatycznie od rozmiaru zbiorów uczących. Wszystkie dostępne legalnie zasoby w postaci encyklopedii i archiwów zostały już wykorzystane, największe firmy prześcigują się w powiększaniu zbiorów uczących o nielegalnie pozyskiwane treści. Na przykład, jeśli w zbiorze uczącym znajdzie się pełna treść artykułu odpowiadającego na jakieś pytania, to w odpowiedzi na właściwie sformułowane zapytanie LLM może "przekopiować" znaczące części artykułu.
  • Uczenie LLM pochłania ogrome ilości energii, porównywalne już z zapotrzebowaniem na energię małych państw. Warto o tym pamiętać gdy mówimy, że "AI zatrzyma globalne ocieplenie" i "uratuje nas przed kryzysem klimatycznym" :-)
  • Czasami LLM dają odpowiedzi bezsensowne lub fałszywe; określane jest to mianem "halucynacji AI", choć wydaje się, że właściwszym określeniem jes tu słowo "bzdury".