USG/Parametryczne: Różnice pomiędzy wersjami

Z Brain-wiki
(Utworzono nową stronę "=Obrazowanie parametryczne= Jednym z istotnym problemów badawczych w ultrasonografii jest zagadnienie estymacji prędkości dźwięku w obrazowanej strukturze. Informac...")
 
Linia 2: Linia 2:
 
Jednym z istotnym problemów badawczych w ultrasonografii jest zagadnienie estymacji prędkości dźwięku w obrazowanej strukturze. Informacja taka może być wykorzystana zarówno do lepszego obrazowania (minimalizacja błędów rekonstrukcji), jak i potencjalnie do charakteryzowania różnych rodzajów tkanek.
 
Jednym z istotnym problemów badawczych w ultrasonografii jest zagadnienie estymacji prędkości dźwięku w obrazowanej strukturze. Informacja taka może być wykorzystana zarówno do lepszego obrazowania (minimalizacja błędów rekonstrukcji), jak i potencjalnie do charakteryzowania różnych rodzajów tkanek.
 
<br><br>
 
<br><br>
Standardowo, rekonstruując obraz RFów przyjmujemy pewną stałą prędkość dźwięku na całej głębokości pomiarowej. W praktyce, takie założenie może być dalekie od prawdy. Jednocześnie, charakterystyka odbiciowa struktur o różnej prędkości dźwięku może być nieodróżnialna na prezentacji BMode. <br>
+
Standardowo, rekonstruując obraz RFów przyjmujemy stałą średnią prędkość dźwięku na całej głębokości pomiarowej (1540m/s). W rzeczywistości prędkość w różnych rodzajach tkanek miękkich jest różna (od 1450m/s dla tłuszczu do 1570m/s dla krwi). Jednocześnie, charakterystyka odbiciowa struktur o różnej prędkości dźwięku może być nieodróżnialna na prezentacji B-mode. <br>
 
Celem tych ćwiczeń będzie implementacja prostej metody szacującej pośrednio różnicę między założoną prędkością dźwięku, a faktyczną prędkością dźwięku.
 
Celem tych ćwiczeń będzie implementacja prostej metody szacującej pośrednio różnicę między założoną prędkością dźwięku, a faktyczną prędkością dźwięku.
  
 
==Metoda==
 
==Metoda==
Wiele metod estymujących prędkość korzysta z możliwości nadawania fal o różnym kształcie. Rozważmy obrazowanie falą płaską pod dwoma kątami, np. -10 i 10 stopni. Mając zrekonstruowane oba obrazy możemy policzyć wzajemną korelację pomiędzy obrazami (przy oknach ustalonej długości), tworząc mapę korelacji. Zauważmy, że dopóki przyjęta do rekonstrukcji prędkość dźwięku jest bliska rzeczywistej, obrazy z obu kątów powinny być mocno skorelowane. Pojawienie się dużej różnicy między tymi prędkościami spowoduje "rozjechanie" się sygnałów z różnych kątów. W konsekwencji, zmaleje korelacja między sygnałami. <br>
+
Wiele metod estymujących prędkość korzysta z możliwości nadawania fal o różnym froncie falowym. Rozważmy obrazowanie falą płaską pod dwoma kątami, np. -10 i 10 stopni. Mając zrekonstruowane oba obrazy możemy policzyć wzajemną korelację pomiędzy obrazami (przy oknach ustalonej długości), tworząc mapę korelacji. Zauważmy, że dopóki przyjęta do rekonstrukcji prędkość dźwięku jest bliska rzeczywistej, obrazy z obu kątów powinny być mocno skorelowane. Pojawienie się dużej różnicy między tymi prędkościami spowoduje "rozjechanie" się sygnałów z różnych kątów. W konsekwencji, zmaleje korelacja między sygnałami. <br>
 
W praktyce, taki obraz korelacji nie jest jeszcze obrazem prędkości dźwięku - jest to tylko pośrednia informacja na temat rozkładu takich prędkości, którą można byłoby następnie wykorzystać do rozwiązania odpowiedniego problemu odwrotnego. W praktyce jednak już sam taki obraz może dostarczyć istotnej informacji diagnostycznej.<br>
 
W praktyce, taki obraz korelacji nie jest jeszcze obrazem prędkości dźwięku - jest to tylko pośrednia informacja na temat rozkładu takich prędkości, którą można byłoby następnie wykorzystać do rozwiązania odpowiedniego problemu odwrotnego. W praktyce jednak już sam taki obraz może dostarczyć istotnej informacji diagnostycznej.<br>
 
Do dyspozycji mamy plik z danymi z fantomu z inkluzją o prędkości dźwięku różnej od prędkości dźwięku otoczenia. Tradycyjnie, parametry:  
 
Do dyspozycji mamy plik z danymi z fantomu z inkluzją o prędkości dźwięku różnej od prędkości dźwięku otoczenia. Tradycyjnie, parametry:  
 
<source lang = python>
 
<source lang = python>
f0=5.5e6 # Częstotliwość nadawcza przetworników [Hz]
+
f0 = 5.5e6 # Częstotliwość nadawcza przetworników [Hz]
fs=50e6 # Częstotliwość próbkowania [Hz]
+
fs = 50e6 # Częstotliwość próbkowania [Hz]
pitch = 0.00021 # Deklarowana odległość między środkami przetworników nadawczo-odbiorczych
+
pitch = 0.21e-3 # odległość między środkami kolejnych przetworników [m]
  
 
na = 15 # Liczba nadań
 
na = 15 # Liczba nadań
theta=[-10,0,10] # kąty dla kolejnych nadań ?????
+
theta = [-10,0,10] # kąty dla kolejnych nadań ?????
  
NT=192 # Liczba przetworników w pełnej aperturze
+
NT = 192 # Liczba przetworników w pełnej aperturze
Ntr=192 # Pełna subapertura nadawcza
+
Ntr = 192 # Pełna subapertura nadawcza
 +
</source>
  
</source> Surowe dane RF znajdują się w tablicy o wymiarach <math>NT\times N \times na </math> <br> gdzie <math>N</math> odpowiada czasowi rejestracji (maksymalnej głębokości obrazowanej) danych z pojedynczego nadania. <br>
+
Surowe dane RF znajdują się w tablicy o wymiarach <math>NT\times N \times na </math> <br> gdzie <math>N</math> odpowiada czasowi rejestracji (maksymalnej głębokości obrazowanej) danych z pojedynczego nadania. <br>
 
Proszę zaimplementować procedurę liczącą mapę współczynników korelacji w oknie głębokości pomiędzy obrazmi. Proszę zbadać taką mapę dla zrekonstruowanych danych z zadania, dla różnych kątów. Jak dobór kątów i ich liczby wpływa na wynikową tablicę?
 
Proszę zaimplementować procedurę liczącą mapę współczynników korelacji w oknie głębokości pomiędzy obrazmi. Proszę zbadać taką mapę dla zrekonstruowanych danych z zadania, dla różnych kątów. Jak dobór kątów i ich liczby wpływa na wynikową tablicę?

Wersja z 19:36, 8 maj 2016

Obrazowanie parametryczne

Jednym z istotnym problemów badawczych w ultrasonografii jest zagadnienie estymacji prędkości dźwięku w obrazowanej strukturze. Informacja taka może być wykorzystana zarówno do lepszego obrazowania (minimalizacja błędów rekonstrukcji), jak i potencjalnie do charakteryzowania różnych rodzajów tkanek.

Standardowo, rekonstruując obraz RFów przyjmujemy stałą średnią prędkość dźwięku na całej głębokości pomiarowej (1540m/s). W rzeczywistości prędkość w różnych rodzajach tkanek miękkich jest różna (od 1450m/s dla tłuszczu do 1570m/s dla krwi). Jednocześnie, charakterystyka odbiciowa struktur o różnej prędkości dźwięku może być nieodróżnialna na prezentacji B-mode.
Celem tych ćwiczeń będzie implementacja prostej metody szacującej pośrednio różnicę między założoną prędkością dźwięku, a faktyczną prędkością dźwięku.

Metoda

Wiele metod estymujących prędkość korzysta z możliwości nadawania fal o różnym froncie falowym. Rozważmy obrazowanie falą płaską pod dwoma kątami, np. -10 i 10 stopni. Mając zrekonstruowane oba obrazy możemy policzyć wzajemną korelację pomiędzy obrazami (przy oknach ustalonej długości), tworząc mapę korelacji. Zauważmy, że dopóki przyjęta do rekonstrukcji prędkość dźwięku jest bliska rzeczywistej, obrazy z obu kątów powinny być mocno skorelowane. Pojawienie się dużej różnicy między tymi prędkościami spowoduje "rozjechanie" się sygnałów z różnych kątów. W konsekwencji, zmaleje korelacja między sygnałami.
W praktyce, taki obraz korelacji nie jest jeszcze obrazem prędkości dźwięku - jest to tylko pośrednia informacja na temat rozkładu takich prędkości, którą można byłoby następnie wykorzystać do rozwiązania odpowiedniego problemu odwrotnego. W praktyce jednak już sam taki obraz może dostarczyć istotnej informacji diagnostycznej.
Do dyspozycji mamy plik z danymi z fantomu z inkluzją o prędkości dźwięku różnej od prędkości dźwięku otoczenia. Tradycyjnie, parametry:

f0 = 5.5e6 # Częstotliwość nadawcza przetworników [Hz]
fs = 50e6 # Częstotliwość próbkowania [Hz]
pitch = 0.21e-3 # odległość między środkami kolejnych przetworników [m]

na = 15 # Liczba nadań
theta = [-10,0,10] # kąty dla kolejnych nadań ?????

NT = 192 # Liczba przetworników w pełnej aperturze
Ntr = 192 # Pełna subapertura nadawcza

Surowe dane RF znajdują się w tablicy o wymiarach [math]NT\times N \times na [/math]
gdzie [math]N[/math] odpowiada czasowi rejestracji (maksymalnej głębokości obrazowanej) danych z pojedynczego nadania.
Proszę zaimplementować procedurę liczącą mapę współczynników korelacji w oknie głębokości pomiędzy obrazmi. Proszę zbadać taką mapę dla zrekonstruowanych danych z zadania, dla różnych kątów. Jak dobór kątów i ich liczby wpływa na wynikową tablicę?