Laboratorium EEG/CSP: Różnice pomiędzy wersjami

Z Brain-wiki
 
(Nie pokazano 28 pośrednich wersji utworzonych przez tego samego użytkownika)
Linia 4: Linia 4:
 
[https://brain.fuw.edu.pl/edu/images/2/2f/BSS.pdf slajdy z prezentacji]
 
[https://brain.fuw.edu.pl/edu/images/2/2f/BSS.pdf slajdy z prezentacji]
  
=Ślepa separacja źródeł=
+
=Ślepa separacja źródeł (BSS)=
 +
{{hidden begin|title=Wstęp teoretyczny do BSS}}
 
Rozważmy ''N''-kanałowy sygnał EEG.
 
Rozważmy ''N''-kanałowy sygnał EEG.
 
Próbkę tego sygnału możemy przedstawić jako punkt w przestrzeni rozpiętej przez osie, z których każda reprezentuje wartość potencjału w jednym kanale. Cały sygnał tworzy w tej przestrzeni chmurę punktów. Rozciągłość tej chmury w danym kierunku mówi nam o wariancji (zmienności) sygnału w tym kierunku.  
 
Próbkę tego sygnału możemy przedstawić jako punkt w przestrzeni rozpiętej przez osie, z których każda reprezentuje wartość potencjału w jednym kanale. Cały sygnał tworzy w tej przestrzeni chmurę punktów. Rozciągłość tej chmury w danym kierunku mówi nam o wariancji (zmienności) sygnału w tym kierunku.  
Linia 57: Linia 58:
  
 
Aby znaleźć <math> \lambda</math> i <math>w</math> możemy wykorzystać w Matlabie funkcję <tt>eig</tt>. Funkcja ta rozwiązuje (również) uogólnione zagadnienia własne postaci ''Aw''=&lambda;''Bw'' dostarczając w wyniku macierz wektorów własnych (w kolumnach) oraz macierz zawierającą na przekątnej odpowiadające im wartości własne.
 
Aby znaleźć <math> \lambda</math> i <math>w</math> możemy wykorzystać w Matlabie funkcję <tt>eig</tt>. Funkcja ta rozwiązuje (również) uogólnione zagadnienia własne postaci ''Aw''=&lambda;''Bw'' dostarczając w wyniku macierz wektorów własnych (w kolumnach) oraz macierz zawierającą na przekątnej odpowiadające im wartości własne.
 +
{{hidden end}}
  
 
<!--
 
<!--
Linia 90: Linia 92:
 
-->
 
-->
  
===Ćwiczenie symulacyjne ===
+
====Ćwiczenie symulacyjne ====
 
{{hidden begin|title=kod przykładowy}}
 
{{hidden begin|title=kod przykładowy}}
 
<source lang  = matlab>
 
<source lang  = matlab>
Linia 238: Linia 240:
  
 
==Zastosowanie filtra CSP do detekcji potencjału P300==
 
==Zastosowanie filtra CSP do detekcji potencjału P300==
 +
{{hidden begin|title=Eksperyment}}
 
===Eksperyment===
 
===Eksperyment===
 
* Proszę zapoznać się z instrukcją: http://laboratorium-eeg.braintech.pl/rozdz10.html
 
* Proszę zapoznać się z instrukcją: http://laboratorium-eeg.braintech.pl/rozdz10.html
Linia 284: Linia 287:
 
# Danych z kalibracji potrzebować będziemy kilka zestawów.  Proszę powtórzyć kilkukrotnie scenariusz &bdquo;kalibracjaP300&rdquo;. Przed każdym uruchomieniem trzeba zmienić string w pliku <tt>file_id_name</tt> np. na <tt>test???</tt> gdzie <tt>???</tt> oznacza kolejne numery.
 
# Danych z kalibracji potrzebować będziemy kilka zestawów.  Proszę powtórzyć kilkukrotnie scenariusz &bdquo;kalibracjaP300&rdquo;. Przed każdym uruchomieniem trzeba zmienić string w pliku <tt>file_id_name</tt> np. na <tt>test???</tt> gdzie <tt>???</tt> oznacza kolejne numery.
 
-->
 
-->
 
+
{{hidden end}}
 
===Analiza wstępna===
 
===Analiza wstępna===
 
Poszczególne etapy analizy proszę kodować w osobnych funkcjach. Funkcje te powinny być wywoływane z nadrzędnego skryptu, który powinien umożliwic wykoanie całości analiz.
 
Poszczególne etapy analizy proszę kodować w osobnych funkcjach. Funkcje te powinny być wywoływane z nadrzędnego skryptu, który powinien umożliwic wykoanie całości analiz.
 
   
 
   
 
* Wczytać dane kalibracyjne do Matlaba i pociąć je na realizacje typu T &mdash; &bdquo;target&rdquo; (związane z wystąpieniami litery &bdquo;B&rdquo;) i NT &mdash; &bdquo;non-target&rdquo; (pozostałe litery) o długości &minus;200 do +800 ms wokół triggerów. Dla każdej realizacji odjąć trend liniowy.
 
* Wczytać dane kalibracyjne do Matlaba i pociąć je na realizacje typu T &mdash; &bdquo;target&rdquo; (związane z wystąpieniami litery &bdquo;B&rdquo;) i NT &mdash; &bdquo;non-target&rdquo; (pozostałe litery) o długości &minus;200 do +800 ms wokół triggerów. Dla każdej realizacji odjąć trend liniowy.
* Sygnał zmontować wzgl. &bdquo;połączonych uszu&rdquo; i wyświetlić średnie przebiegi dla warunku T i NT w układzie topograficznym &mdash; wykorzystać w tym celu funkcję <tt>plottopo</tt> z pakietu Eeglab.
+
* Sygnał zmontować wzgl. &bdquo;połączonych uszu&rdquo; i wyświetlić średnie przebiegi dla warunku T i NT w układzie topograficznym &mdash; można wykorzystać w tym celu poniższy fragment kodu.
 +
{{hidden begin|title= fragment kodu do rysowania dwóch ERPów -- zamiast funkcji plottopo}}
 +
<source lang = matlab>
 +
%% stworzenie osi
 +
      % zakładam, że dane do rysowania są w dwóch strukturach EEG1 i EEG2 (struktury eeglab),
 +
      % te dane są podzielone na realizacje i mają kształt (kanały , czas, epoki)
 +
      % i że mamy już załadowane położenia elektrod we współrzędnych
 +
      % biegunowych
 +
      w = 0.125;
 +
      h = 0.125;
 +
      sc = 0.8;
 +
      figure()
 +
    for chanNum = 1:length(EEG1.chanlocs)
 +
        r =EEG1.chanlocs(chanNum).radius;
 +
        theta = EEG1.chanlocs(chanNum).theta;
 +
        x = r* sin(theta/180*pi)*sc+0.46;
 +
        y = r* cos(theta/180*pi)*sc+0.46;
 +
        ax(chanNum) = axes('Position', [x, y, w, h]);
 +
    end
 +
%%uśredniam EEG po powtórzeniach aby otrzymać ERP
 +
  ERP1 =squeeze( mean( EEG1.data,3)) ;
 +
  ERP2 =squeeze( mean( EEG2.data,3)) ;
 +
%% rysowanie uśrednionych potencjałów z dwóch struktur EEG
 +
for chanNum = 1:length(EEG1.chanlocs)
 +
    hold(ax(chanNum),'on');
 +
    plot(ax(chanNum), EEG1.times, ERP1(chanNum ,:));
 +
    plot(ax(chanNum), EEG2.times, ERP2(chanNum ,:));
 +
    title(ax(chanNum),EEG1.chanlocs(chanNum).labels );
 +
    hold(ax(chanNum),'off');
 +
end
 +
</source>
 +
{{hidden end}}
  
Poniżej zaprezentowany jest przykładowy skrypt do cięcia danych wokół znaczników. Działa on z plikami zawartymi w archiwum:
+
<small>Poniżej zaprezentowany jest przykładowy skrypt do cięcia danych wokół znaczników. Działa on z plikami zawartymi w archiwum:
 
: [[Plik:KalibracjaP300.tar.gz]]  
 
: [[Plik:KalibracjaP300.tar.gz]]  
 
Korzysta z funkcji pomocniczych dostępnych w dystrybucji obci w katalogu  
 
Korzysta z funkcji pomocniczych dostępnych w dystrybucji obci w katalogu  
 
: /usr/share/openbci/analysis/matlab_obci_signal_processing
 
: /usr/share/openbci/analysis/matlab_obci_signal_processing
Openbci można pobrać z https://github.com/BrainTech/openbci
+
Openbci można pobrać z https://github.com/BrainTech/openbci</small>
  
 
{{hidden begin|title=przykładowy skrypt}}
 
{{hidden begin|title=przykładowy skrypt}}
Linia 387: Linia 421:
 
{{hidden end}}
 
{{hidden end}}
  
===Analiza CSP===
+
===ZADANIE: Analiza CSP===
Link do Read menager [https://drive.google.com/open?id=0BzwQ_Lscn8yDS3RXNWdBbkxEQ2c]
 
  
* Korzystając z danych kalibracyjnych wykonać analizę CSP wzmacniającą potencjał P300.
+
Przegląd badań o P300: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715154/
 +
 
 +
Link do Read menager [https://drive.google.com/file/d/1OgOduK5Zn7GgNl5XdCyLWXHJ7wTJIWcC/view?usp=share_link]
 +
<!---
 +
[https://drive.google.com/open?id=0BzwQ_Lscn8yDS3RXNWdBbkxEQ2c]
 +
--->
 +
* Wykonać analizę CSP wzmacniającą potencjał P300.
 
* Zaprezentować średnią ze wszystkich kanałów źródłowych z warunku target (jeden kolor) i non-target (inny kolor) w subplotach ułożonych w prostokątnej siatce. Zaobserwować dla którego kanału średnie różnią się najbardziej. Czy jest związek tego kanału z wartościami własnymi?
 
* Zaprezentować średnią ze wszystkich kanałów źródłowych z warunku target (jeden kolor) i non-target (inny kolor) w subplotach ułożonych w prostokątnej siatce. Zaobserwować dla którego kanału średnie różnią się najbardziej. Czy jest związek tego kanału z wartościami własnymi?
  
Linia 396: Linia 435:
 
** filtrowi przestrzennemu  
 
** filtrowi przestrzennemu  
 
** rzutu topograficznego źródła na elektrody.
 
** rzutu topograficznego źródła na elektrody.
 +
<!---
 +
* Zbadać powtarzalność topografii pomiędzy plikami konfiguracyjnymi.
 +
--->
  
* Zbadać powtarzalność topografii pomiędzy plikami konfiguracyjnymi.
+
{{hidden begin|title=Wybór i separacja cech}}
  
 
===Wybór i separacja cech===
 
===Wybór i separacja cech===
Linia 407: Linia 449:
 
**  i sumujemy je w wybranym zakresie czasu.
 
**  i sumujemy je w wybranym zakresie czasu.
 
* Zaobserwuj jak zmienia się separacja w grupach target i non-target.
 
* Zaobserwuj jak zmienia się separacja w grupach target i non-target.
 +
{{hidden end}}
  
 
==Filtry przestrzenne dla SSEP ==
 
==Filtry przestrzenne dla SSEP ==
 
+
{{hidden begin|title=Filtry przestrzenne dla SSEP}}
 
=== Teoria===
 
=== Teoria===
 
Ciekawa koncepcja filtra przestrzennego dla SSVEP zaprezentowana jest  tu: http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569193209.pdf
 
Ciekawa koncepcja filtra przestrzennego dla SSVEP zaprezentowana jest  tu: http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569193209.pdf
Linia 503: Linia 546:
  
  
====Analiza danych z eksperymentu własnego ====
+
====ZADANIE: Analiza danych z eksperymentu własnego ====
 
# Przefiltruj sygnały EEG w paśmie 1-45 Hz za pomocą procedury <tt>filtfilt</tt>.  
 
# Przefiltruj sygnały EEG w paśmie 1-45 Hz za pomocą procedury <tt>filtfilt</tt>.  
 
# Na podstawie sygnału trigger oraz danych zapisanych w pliku wyodrębnij sygnały EEG zarejestrowane w trakcie stymulacji z odpowiednimi częstościami.
 
# Na podstawie sygnału trigger oraz danych zapisanych w pliku wyodrębnij sygnały EEG zarejestrowane w trakcie stymulacji z odpowiednimi częstościami.
Linia 561: Linia 604:
 
** robimy predykcję klasyfikatora, z którym warunkiem patrzenia mamy do czynienia. Wyświetlamy na ekranie komunikat.
 
** robimy predykcję klasyfikatora, z którym warunkiem patrzenia mamy do czynienia. Wyświetlamy na ekranie komunikat.
 
* Testujemy czy powyższy schemat analizy pozwala na komunikację.
 
* Testujemy czy powyższy schemat analizy pozwala na komunikację.
 
+
{{hidden end}}
 
<!--
 
<!--
 
===Eksperyment ASSR===
 
===Eksperyment ASSR===
Linia 599: Linia 642:
  
 
==ICA jako filtr przestrzenny==
 
==ICA jako filtr przestrzenny==
 +
{{hidden begin|title=Wstęp teoretyczny do ICA}}
 
===Definicja ===
 
===Definicja ===
 
Independent Component Analysis (ICA) jest metodą statystycznej analizy sygnałów, która dokonuje dekompozycji wielokanałowych zapisów na składowe niezależne w sensie statystycznym.
 
Independent Component Analysis (ICA) jest metodą statystycznej analizy sygnałów, która dokonuje dekompozycji wielokanałowych zapisów na składowe niezależne w sensie statystycznym.
Linia 653: Linia 697:
 
Intuicyjna heurystyka poszukiwania najbardziej niegaussowskich składowych może być użyta do wyprowadzenia różnych funkcji kosztu, których optymalizacja daje model ICA, np. kurtoza.
 
Intuicyjna heurystyka poszukiwania najbardziej niegaussowskich składowych może być użyta do wyprowadzenia różnych funkcji kosztu, których optymalizacja daje model ICA, np. kurtoza.
  
<math>kurt(y) = E{y^4} - 3(E{y^2})^2</math>
+
<math>kurt(y) = E\{y^4\} - 3(E{y^2})^2</math>
  
Inną miarą gassowskości jest neg-entropia, któ®ą można wyprowadzić z entropii:  
+
Inną miarą gassowskości jest neg-entropia, którą można wyprowadzić z entropii:  
 
Entropia jest miarą średniego zdziwienia wynikiem obserwacji zmiennej losowej:
 
Entropia jest miarą średniego zdziwienia wynikiem obserwacji zmiennej losowej:
<math>H(Y) = - \sum_i P(Y= a_i)log(P(Y=a_i)) </math>
+
<math>H(Y) = - \sum_i P(Y= a_i) \log(P(Y=a_i)) </math>
  
 
Negentropia jest zdefiniowana:
 
Negentropia jest zdefiniowana:
Linia 666: Linia 710:
 
Negentropia jest skomplikowana obliczeniow, więc w praktyce używana jest formuła przybliżona:
 
Negentropia jest skomplikowana obliczeniow, więc w praktyce używana jest formuła przybliżona:
  
<math> J(y) \approx \sum_{i=1}^p k_i [E{G_i (y)}  -E{G_i(\ni)}]</math>  
+
<math> J(y) \varpropto  [E\{G (y)\}  - E\{G(\nu)\}]</math>  
  
 +
<math>\nu </math> jest zmienną losową ze standardowego rozkładu normalnego , a G są pewnymi niekwadratowymi funkcjami.
 +
 +
W algorytmie FastICA extremum negentropii jest znajdowane w procedurze bazującej na optymalizacji Netwona.
 +
(szczegóły np.: sekcja 6 w https://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf)
  
  
Linia 696: Linia 744:
 
* http://sccn.ucsd.edu/~arno/indexica.html
 
* http://sccn.ucsd.edu/~arno/indexica.html
 
* http://cis.legacy.ics.tkk.fi/aapo/papers/IJCNN99_tutorialweb/
 
* http://cis.legacy.ics.tkk.fi/aapo/papers/IJCNN99_tutorialweb/
 +
{{hidden end}}
 +
{{hidden begin|title=Wydobywanie interesujących komponentów}}
  
=== Wydobywanie interesujących komponentów ===
+
=== ZADANIE: Wydobywanie interesujących komponentów ===
  
 
Dane do tej części ćwiczeń proszę pobrać i rozpakować w swoim katalogu:
 
Dane do tej części ćwiczeń proszę pobrać i rozpakować w swoim katalogu:
Linia 720: Linia 770:
 
** Czy uzyskiwane komponenty są powtarzalne?  
 
** Czy uzyskiwane komponenty są powtarzalne?  
 
** Swoje wyniki porównać też z sąsiednimi grupami.
 
** Swoje wyniki porównać też z sąsiednimi grupami.
 +
{{hidden end}}
  
=== Identyfikacja artefaktów ===
+
===ZADANIE: Identyfikacja artefaktów ===
 
Proszę pobrać dane:
 
Proszę pobrać dane:
  
Linia 737: Linia 788:
 
* obejrzyj topografię komponentów
 
* obejrzyj topografię komponentów
 
* zidentyfikuj komponenty odpowiadające mruganiu i aktywności mięśniowej.
 
* zidentyfikuj komponenty odpowiadające mruganiu i aktywności mięśniowej.
 +
;UWAGA: Aktualnie do wykrywania komponentów artefaktowych warto posłużyć się wtyczkami do eeglaba dostępnymi przez stronę:
 +
 +
https://sccn.ucsd.edu/eeglab/plugin_uploader/plugin_list_all.php
 +
 +
* ICLabel
 +
* MARA
 +
 +
====W raporcie: ====
 +
* zaprezentuj fragmenty sygnału zawierającego artefakty oczne i mięśniowe przed i po zastosowaniu czyszczenia poprzez usuwanie komponentów zdominowanych przez artefakty.
 +
* zaprezentuj topografię i przebiegi czasowe komponentów zidentyfikowanych jako artefakty oczne i mięśniowe.
 +
 +
  
 
<!--
 
<!--
Linia 744: Linia 807:
 
-->
 
-->
  
 +
<!---
 
==Eksperyment ASSR==
 
==Eksperyment ASSR==
 
W eksprymencie wykorzystujemy układ do generacji potencjałów słuchowych stanu ustalonego (ASSR). Wejście układu ASSR typu mini-jack wkładamy w wyjście słuchawkowe w laptopie. Drugie wejście układu ASSR wkładamy do wyjścia triggera we wzmacniaczu. Uruchamiamy plik dźwiękowy MM40tr.wav. Można go znalezc w: http://www.fuw.edu.pl/~suffa/LabEEG/MM40tr.wav
 
W eksprymencie wykorzystujemy układ do generacji potencjałów słuchowych stanu ustalonego (ASSR). Wejście układu ASSR typu mini-jack wkładamy w wyjście słuchawkowe w laptopie. Drugie wejście układu ASSR wkładamy do wyjścia triggera we wzmacniaczu. Uruchamiamy plik dźwiękowy MM40tr.wav. Można go znalezc w: http://www.fuw.edu.pl/~suffa/LabEEG/MM40tr.wav
Linia 775: Linia 839:
 
Transformacja Hjortha jest przybliżeniem numerycznym transformacji Laplace'a, czyli drugiej pochodnej przestrzennej. Obliczamy ją jako różnicę potencjału pomiędzy daną elektrodą i średnią z czterech sąsiednich elektrod.
 
Transformacja Hjortha jest przybliżeniem numerycznym transformacji Laplace'a, czyli drugiej pochodnej przestrzennej. Obliczamy ją jako różnicę potencjału pomiędzy daną elektrodą i średnią z czterech sąsiednich elektrod.
 
Przelicz potencjały z elektrod, w których występuję odpowiedź ASSR na montaż Hjortha i powtórz analizę opisaną powyżej.
 
Przelicz potencjały z elektrod, w których występuję odpowiedź ASSR na montaż Hjortha i powtórz analizę opisaną powyżej.
 +
--->

Aktualna wersja na dzień 08:47, 14 maj 2024

Laboratorium_EEG/BSS

Prezentacja

slajdy z prezentacji

Ślepa separacja źródeł (BSS)


Ćwiczenie symulacyjne

Zastosowanie filtra CSP do detekcji potencjału P300

Analiza wstępna

Poszczególne etapy analizy proszę kodować w osobnych funkcjach. Funkcje te powinny być wywoływane z nadrzędnego skryptu, który powinien umożliwic wykoanie całości analiz.

  • Wczytać dane kalibracyjne do Matlaba i pociąć je na realizacje typu T — „target” (związane z wystąpieniami litery „B”) i NT — „non-target” (pozostałe litery) o długości −200 do +800 ms wokół triggerów. Dla każdej realizacji odjąć trend liniowy.
  • Sygnał zmontować wzgl. „połączonych uszu” i wyświetlić średnie przebiegi dla warunku T i NT w układzie topograficznym — można wykorzystać w tym celu poniższy fragment kodu.

Poniżej zaprezentowany jest przykładowy skrypt do cięcia danych wokół znaczników. Działa on z plikami zawartymi w archiwum:

Plik:KalibracjaP300.tar.gz

Korzysta z funkcji pomocniczych dostępnych w dystrybucji obci w katalogu

/usr/share/openbci/analysis/matlab_obci_signal_processing

Openbci można pobrać z https://github.com/BrainTech/openbci

ZADANIE: Analiza CSP

Przegląd badań o P300: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715154/

Link do Read menager [1]

  • Wykonać analizę CSP wzmacniającą potencjał P300.
  • Zaprezentować średnią ze wszystkich kanałów źródłowych z warunku target (jeden kolor) i non-target (inny kolor) w subplotach ułożonych w prostokątnej siatce. Zaobserwować dla którego kanału średnie różnią się najbardziej. Czy jest związek tego kanału z wartościami własnymi?
  • Dla kanału najbardziej różnicującego wykonać mapki topograficzne (do wykonania tych mapek wykorzystać funkcję topoplot z pakietu eeglab) wektorów odpowiadających:
    • filtrowi przestrzennemu
    • rzutu topograficznego źródła na elektrody.

Filtry przestrzenne dla SSEP

ICA jako filtr przestrzenny

ZADANIE: Identyfikacja artefaktów

Proszę pobrać dane:

Pochodzą one z eksperymentu w którym osoba badana czytała słowa o różnych właściwościach wzbudzania emocji.

  • wczytaj je do eeglaba
  • wczytaj lokalizację kanałów z pliku Arousal-10-20-Cap.locs
  • obejrzyj przebiegi czasowe
  • odrzuć kanał z diodą (21) i z GSR (20)
  • zrób dekompozycję ICA
  • obejrzyj topografię komponentów
  • zidentyfikuj komponenty odpowiadające mruganiu i aktywności mięśniowej.
UWAGA
Aktualnie do wykrywania komponentów artefaktowych warto posłużyć się wtyczkami do eeglaba dostępnymi przez stronę:

https://sccn.ucsd.edu/eeglab/plugin_uploader/plugin_list_all.php

  • ICLabel
  • MARA

W raporcie:

  • zaprezentuj fragmenty sygnału zawierającego artefakty oczne i mięśniowe przed i po zastosowaniu czyszczenia poprzez usuwanie komponentów zdominowanych przez artefakty.
  • zaprezentuj topografię i przebiegi czasowe komponentów zidentyfikowanych jako artefakty oczne i mięśniowe.