Laboratorium EEG/CSP: Różnice pomiędzy wersjami

Z Brain-wiki
 
(Nie pokazano 27 pośrednich wersji utworzonych przez tego samego użytkownika)
Linia 4: Linia 4:
 
[https://brain.fuw.edu.pl/edu/images/2/2f/BSS.pdf slajdy z prezentacji]
 
[https://brain.fuw.edu.pl/edu/images/2/2f/BSS.pdf slajdy z prezentacji]
  
=Ślepa separacja źródeł=
+
=Ślepa separacja źródeł (BSS)=
 +
{{hidden begin|title=Wstęp teoretyczny do BSS}}
 
Rozważmy ''N''-kanałowy sygnał EEG.
 
Rozważmy ''N''-kanałowy sygnał EEG.
 
Próbkę tego sygnału możemy przedstawić jako punkt w przestrzeni rozpiętej przez osie, z których każda reprezentuje wartość potencjału w jednym kanale. Cały sygnał tworzy w tej przestrzeni chmurę punktów. Rozciągłość tej chmury w danym kierunku mówi nam o wariancji (zmienności) sygnału w tym kierunku.  
 
Próbkę tego sygnału możemy przedstawić jako punkt w przestrzeni rozpiętej przez osie, z których każda reprezentuje wartość potencjału w jednym kanale. Cały sygnał tworzy w tej przestrzeni chmurę punktów. Rozciągłość tej chmury w danym kierunku mówi nam o wariancji (zmienności) sygnału w tym kierunku.  
Linia 57: Linia 58:
  
 
Aby znaleźć <math> \lambda</math> i <math>w</math> możemy wykorzystać w Matlabie funkcję <tt>eig</tt>. Funkcja ta rozwiązuje (również) uogólnione zagadnienia własne postaci ''Aw''=&lambda;''Bw'' dostarczając w wyniku macierz wektorów własnych (w kolumnach) oraz macierz zawierającą na przekątnej odpowiadające im wartości własne.
 
Aby znaleźć <math> \lambda</math> i <math>w</math> możemy wykorzystać w Matlabie funkcję <tt>eig</tt>. Funkcja ta rozwiązuje (również) uogólnione zagadnienia własne postaci ''Aw''=&lambda;''Bw'' dostarczając w wyniku macierz wektorów własnych (w kolumnach) oraz macierz zawierającą na przekątnej odpowiadające im wartości własne.
 +
{{hidden end}}
  
 
<!--
 
<!--
Linia 90: Linia 92:
 
-->
 
-->
  
===Ćwiczenie symulacyjne ===
+
====Ćwiczenie symulacyjne ====
 
{{hidden begin|title=kod przykładowy}}
 
{{hidden begin|title=kod przykładowy}}
 
<source lang  = matlab>
 
<source lang  = matlab>
Linia 238: Linia 240:
  
 
==Zastosowanie filtra CSP do detekcji potencjału P300==
 
==Zastosowanie filtra CSP do detekcji potencjału P300==
 +
{{hidden begin|title=Eksperyment}}
 
===Eksperyment===
 
===Eksperyment===
 
* Proszę zapoznać się z instrukcją: http://laboratorium-eeg.braintech.pl/rozdz10.html
 
* Proszę zapoznać się z instrukcją: http://laboratorium-eeg.braintech.pl/rozdz10.html
Linia 284: Linia 287:
 
# Danych z kalibracji potrzebować będziemy kilka zestawów.  Proszę powtórzyć kilkukrotnie scenariusz &bdquo;kalibracjaP300&rdquo;. Przed każdym uruchomieniem trzeba zmienić string w pliku <tt>file_id_name</tt> np. na <tt>test???</tt> gdzie <tt>???</tt> oznacza kolejne numery.
 
# Danych z kalibracji potrzebować będziemy kilka zestawów.  Proszę powtórzyć kilkukrotnie scenariusz &bdquo;kalibracjaP300&rdquo;. Przed każdym uruchomieniem trzeba zmienić string w pliku <tt>file_id_name</tt> np. na <tt>test???</tt> gdzie <tt>???</tt> oznacza kolejne numery.
 
-->
 
-->
 
+
{{hidden end}}
 
===Analiza wstępna===
 
===Analiza wstępna===
 
Poszczególne etapy analizy proszę kodować w osobnych funkcjach. Funkcje te powinny być wywoływane z nadrzędnego skryptu, który powinien umożliwic wykoanie całości analiz.
 
Poszczególne etapy analizy proszę kodować w osobnych funkcjach. Funkcje te powinny być wywoływane z nadrzędnego skryptu, który powinien umożliwic wykoanie całości analiz.
 
   
 
   
 
* Wczytać dane kalibracyjne do Matlaba i pociąć je na realizacje typu T &mdash; &bdquo;target&rdquo; (związane z wystąpieniami litery &bdquo;B&rdquo;) i NT &mdash; &bdquo;non-target&rdquo; (pozostałe litery) o długości &minus;200 do +800 ms wokół triggerów. Dla każdej realizacji odjąć trend liniowy.
 
* Wczytać dane kalibracyjne do Matlaba i pociąć je na realizacje typu T &mdash; &bdquo;target&rdquo; (związane z wystąpieniami litery &bdquo;B&rdquo;) i NT &mdash; &bdquo;non-target&rdquo; (pozostałe litery) o długości &minus;200 do +800 ms wokół triggerów. Dla każdej realizacji odjąć trend liniowy.
* Sygnał zmontować wzgl. &bdquo;połączonych uszu&rdquo; i wyświetlić średnie przebiegi dla warunku T i NT w układzie topograficznym &mdash; wykorzystać w tym celu funkcję <tt>plottopo</tt> z pakietu Eeglab.
+
* Sygnał zmontować wzgl. &bdquo;połączonych uszu&rdquo; i wyświetlić średnie przebiegi dla warunku T i NT w układzie topograficznym &mdash; można wykorzystać w tym celu poniższy fragment kodu.
 +
{{hidden begin|title= fragment kodu do rysowania dwóch ERPów -- zamiast funkcji plottopo}}
 +
<source lang = matlab>
 +
%% stworzenie osi
 +
      % zakładam, że dane do rysowania są w dwóch strukturach EEG1 i EEG2 (struktury eeglab),
 +
      % te dane są podzielone na realizacje i mają kształt (kanały , czas, epoki)
 +
      % i że mamy już załadowane położenia elektrod we współrzędnych
 +
      % biegunowych
 +
      w = 0.125;
 +
      h = 0.125;
 +
      sc = 0.8;
 +
      figure()
 +
    for chanNum = 1:length(EEG1.chanlocs)
 +
        r =EEG1.chanlocs(chanNum).radius;
 +
        theta = EEG1.chanlocs(chanNum).theta;
 +
        x = r* sin(theta/180*pi)*sc+0.46;
 +
        y = r* cos(theta/180*pi)*sc+0.46;
 +
        ax(chanNum) = axes('Position', [x, y, w, h]);
 +
    end
 +
%%uśredniam EEG po powtórzeniach aby otrzymać ERP
 +
  ERP1 =squeeze( mean( EEG1.data,3)) ;
 +
  ERP2 =squeeze( mean( EEG2.data,3)) ;
 +
%% rysowanie uśrednionych potencjałów z dwóch struktur EEG
 +
for chanNum = 1:length(EEG1.chanlocs)
 +
    hold(ax(chanNum),'on');
 +
    plot(ax(chanNum), EEG1.times, ERP1(chanNum ,:));
 +
    plot(ax(chanNum), EEG2.times, ERP2(chanNum ,:));
 +
    title(ax(chanNum),EEG1.chanlocs(chanNum).labels );
 +
    hold(ax(chanNum),'off');
 +
end
 +
</source>
 +
{{hidden end}}
  
Poniżej zaprezentowany jest przykładowy skrypt do cięcia danych wokół znaczników. Działa on z plikami zawartymi w archiwum:
+
<small>Poniżej zaprezentowany jest przykładowy skrypt do cięcia danych wokół znaczników. Działa on z plikami zawartymi w archiwum:
 
: [[Plik:KalibracjaP300.tar.gz]]  
 
: [[Plik:KalibracjaP300.tar.gz]]  
 
Korzysta z funkcji pomocniczych dostępnych w dystrybucji obci w katalogu  
 
Korzysta z funkcji pomocniczych dostępnych w dystrybucji obci w katalogu  
 
: /usr/share/openbci/analysis/matlab_obci_signal_processing
 
: /usr/share/openbci/analysis/matlab_obci_signal_processing
Openbci można pobrać z https://github.com/BrainTech/openbci
+
Openbci można pobrać z https://github.com/BrainTech/openbci</small>
  
 
{{hidden begin|title=przykładowy skrypt}}
 
{{hidden begin|title=przykładowy skrypt}}
Linia 387: Linia 421:
 
{{hidden end}}
 
{{hidden end}}
  
===Analiza CSP===
+
===ZADANIE: Analiza CSP===
Link do Read menager [https://drive.google.com/open?id=0BzwQ_Lscn8yDS3RXNWdBbkxEQ2c]
 
  
* Korzystając z danych kalibracyjnych wykonać analizę CSP wzmacniającą potencjał P300.
+
Przegląd badań o P300: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715154/
 +
 
 +
Link do Read menager [https://drive.google.com/file/d/1OgOduK5Zn7GgNl5XdCyLWXHJ7wTJIWcC/view?usp=share_link]
 +
<!---
 +
[https://drive.google.com/open?id=0BzwQ_Lscn8yDS3RXNWdBbkxEQ2c]
 +
--->
 +
* Wykonać analizę CSP wzmacniającą potencjał P300.
 
* Zaprezentować średnią ze wszystkich kanałów źródłowych z warunku target (jeden kolor) i non-target (inny kolor) w subplotach ułożonych w prostokątnej siatce. Zaobserwować dla którego kanału średnie różnią się najbardziej. Czy jest związek tego kanału z wartościami własnymi?
 
* Zaprezentować średnią ze wszystkich kanałów źródłowych z warunku target (jeden kolor) i non-target (inny kolor) w subplotach ułożonych w prostokątnej siatce. Zaobserwować dla którego kanału średnie różnią się najbardziej. Czy jest związek tego kanału z wartościami własnymi?
  
Linia 396: Linia 435:
 
** filtrowi przestrzennemu  
 
** filtrowi przestrzennemu  
 
** rzutu topograficznego źródła na elektrody.
 
** rzutu topograficznego źródła na elektrody.
 +
<!---
 +
* Zbadać powtarzalność topografii pomiędzy plikami konfiguracyjnymi.
 +
--->
  
* Zbadać powtarzalność topografii pomiędzy plikami konfiguracyjnymi.
+
{{hidden begin|title=Wybór i separacja cech}}
  
 
===Wybór i separacja cech===
 
===Wybór i separacja cech===
Linia 407: Linia 449:
 
**  i sumujemy je w wybranym zakresie czasu.
 
**  i sumujemy je w wybranym zakresie czasu.
 
* Zaobserwuj jak zmienia się separacja w grupach target i non-target.
 
* Zaobserwuj jak zmienia się separacja w grupach target i non-target.
 +
{{hidden end}}
  
 
==Filtry przestrzenne dla SSEP ==
 
==Filtry przestrzenne dla SSEP ==
 
+
{{hidden begin|title=Filtry przestrzenne dla SSEP}}
 
=== Teoria===
 
=== Teoria===
 
Ciekawa koncepcja filtra przestrzennego dla SSVEP zaprezentowana jest  tu: http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569193209.pdf
 
Ciekawa koncepcja filtra przestrzennego dla SSVEP zaprezentowana jest  tu: http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569193209.pdf
Linia 503: Linia 546:
  
  
====Analiza danych z eksperymentu własnego ====
+
====ZADANIE: Analiza danych z eksperymentu własnego ====
 
# Przefiltruj sygnały EEG w paśmie 1-45 Hz za pomocą procedury <tt>filtfilt</tt>.  
 
# Przefiltruj sygnały EEG w paśmie 1-45 Hz za pomocą procedury <tt>filtfilt</tt>.  
 
# Na podstawie sygnału trigger oraz danych zapisanych w pliku wyodrębnij sygnały EEG zarejestrowane w trakcie stymulacji z odpowiednimi częstościami.
 
# Na podstawie sygnału trigger oraz danych zapisanych w pliku wyodrębnij sygnały EEG zarejestrowane w trakcie stymulacji z odpowiednimi częstościami.
Linia 561: Linia 604:
 
** robimy predykcję klasyfikatora, z którym warunkiem patrzenia mamy do czynienia. Wyświetlamy na ekranie komunikat.
 
** robimy predykcję klasyfikatora, z którym warunkiem patrzenia mamy do czynienia. Wyświetlamy na ekranie komunikat.
 
* Testujemy czy powyższy schemat analizy pozwala na komunikację.
 
* Testujemy czy powyższy schemat analizy pozwala na komunikację.
 
+
{{hidden end}}
 
<!--
 
<!--
 
===Eksperyment ASSR===
 
===Eksperyment ASSR===
Linia 599: Linia 642:
  
 
==ICA jako filtr przestrzenny==
 
==ICA jako filtr przestrzenny==
 +
{{hidden begin|title=Wstęp teoretyczny do ICA}}
 
===Definicja ===
 
===Definicja ===
 
Independent Component Analysis (ICA) jest metodą statystycznej analizy sygnałów, która dokonuje dekompozycji wielokanałowych zapisów na składowe niezależne w sensie statystycznym.
 
Independent Component Analysis (ICA) jest metodą statystycznej analizy sygnałów, która dokonuje dekompozycji wielokanałowych zapisów na składowe niezależne w sensie statystycznym.
Linia 666: Linia 710:
 
Negentropia jest skomplikowana obliczeniow, więc w praktyce używana jest formuła przybliżona:
 
Negentropia jest skomplikowana obliczeniow, więc w praktyce używana jest formuła przybliżona:
  
<math> J(y) \approx \sum_{i=1}^p k_i [E\{G_i (y)\}  -E\{G_i(\ni)\}]</math>  
+
<math> J(y) \varpropto  [E\{G (y)\}  - E\{G(\nu)\}]</math>  
  
 +
<math>\nu </math> jest zmienną losową ze standardowego rozkładu normalnego , a G są pewnymi niekwadratowymi funkcjami.
 +
 +
W algorytmie FastICA extremum negentropii jest znajdowane w procedurze bazującej na optymalizacji Netwona.
 +
(szczegóły np.: sekcja 6 w https://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf)
  
  
Linia 696: Linia 744:
 
* http://sccn.ucsd.edu/~arno/indexica.html
 
* http://sccn.ucsd.edu/~arno/indexica.html
 
* http://cis.legacy.ics.tkk.fi/aapo/papers/IJCNN99_tutorialweb/
 
* http://cis.legacy.ics.tkk.fi/aapo/papers/IJCNN99_tutorialweb/
 +
{{hidden end}}
 +
{{hidden begin|title=Wydobywanie interesujących komponentów}}
  
=== Wydobywanie interesujących komponentów ===
+
=== ZADANIE: Wydobywanie interesujących komponentów ===
  
 
Dane do tej części ćwiczeń proszę pobrać i rozpakować w swoim katalogu:
 
Dane do tej części ćwiczeń proszę pobrać i rozpakować w swoim katalogu:
Linia 720: Linia 770:
 
** Czy uzyskiwane komponenty są powtarzalne?  
 
** Czy uzyskiwane komponenty są powtarzalne?  
 
** Swoje wyniki porównać też z sąsiednimi grupami.
 
** Swoje wyniki porównać też z sąsiednimi grupami.
 +
{{hidden end}}
  
=== Identyfikacja artefaktów ===
+
===ZADANIE: Identyfikacja artefaktów ===
 
Proszę pobrać dane:
 
Proszę pobrać dane:
  
Linia 737: Linia 788:
 
* obejrzyj topografię komponentów
 
* obejrzyj topografię komponentów
 
* zidentyfikuj komponenty odpowiadające mruganiu i aktywności mięśniowej.
 
* zidentyfikuj komponenty odpowiadające mruganiu i aktywności mięśniowej.
 +
;UWAGA: Aktualnie do wykrywania komponentów artefaktowych warto posłużyć się wtyczkami do eeglaba dostępnymi przez stronę:
 +
 +
https://sccn.ucsd.edu/eeglab/plugin_uploader/plugin_list_all.php
 +
 +
* ICLabel
 +
* MARA
 +
 +
====W raporcie: ====
 +
* zaprezentuj fragmenty sygnału zawierającego artefakty oczne i mięśniowe przed i po zastosowaniu czyszczenia poprzez usuwanie komponentów zdominowanych przez artefakty.
 +
* zaprezentuj topografię i przebiegi czasowe komponentów zidentyfikowanych jako artefakty oczne i mięśniowe.
 +
 +
  
 
<!--
 
<!--
Linia 744: Linia 807:
 
-->
 
-->
  
 +
<!---
 
==Eksperyment ASSR==
 
==Eksperyment ASSR==
 
W eksprymencie wykorzystujemy układ do generacji potencjałów słuchowych stanu ustalonego (ASSR). Wejście układu ASSR typu mini-jack wkładamy w wyjście słuchawkowe w laptopie. Drugie wejście układu ASSR wkładamy do wyjścia triggera we wzmacniaczu. Uruchamiamy plik dźwiękowy MM40tr.wav. Można go znalezc w: http://www.fuw.edu.pl/~suffa/LabEEG/MM40tr.wav
 
W eksprymencie wykorzystujemy układ do generacji potencjałów słuchowych stanu ustalonego (ASSR). Wejście układu ASSR typu mini-jack wkładamy w wyjście słuchawkowe w laptopie. Drugie wejście układu ASSR wkładamy do wyjścia triggera we wzmacniaczu. Uruchamiamy plik dźwiękowy MM40tr.wav. Można go znalezc w: http://www.fuw.edu.pl/~suffa/LabEEG/MM40tr.wav
Linia 775: Linia 839:
 
Transformacja Hjortha jest przybliżeniem numerycznym transformacji Laplace'a, czyli drugiej pochodnej przestrzennej. Obliczamy ją jako różnicę potencjału pomiędzy daną elektrodą i średnią z czterech sąsiednich elektrod.
 
Transformacja Hjortha jest przybliżeniem numerycznym transformacji Laplace'a, czyli drugiej pochodnej przestrzennej. Obliczamy ją jako różnicę potencjału pomiędzy daną elektrodą i średnią z czterech sąsiednich elektrod.
 
Przelicz potencjały z elektrod, w których występuję odpowiedź ASSR na montaż Hjortha i powtórz analizę opisaną powyżej.
 
Przelicz potencjały z elektrod, w których występuję odpowiedź ASSR na montaż Hjortha i powtórz analizę opisaną powyżej.
 +
--->

Aktualna wersja na dzień 08:47, 14 maj 2024

Laboratorium_EEG/BSS

Prezentacja

slajdy z prezentacji

Ślepa separacja źródeł (BSS)


Ćwiczenie symulacyjne

Zastosowanie filtra CSP do detekcji potencjału P300

Analiza wstępna

Poszczególne etapy analizy proszę kodować w osobnych funkcjach. Funkcje te powinny być wywoływane z nadrzędnego skryptu, który powinien umożliwic wykoanie całości analiz.

  • Wczytać dane kalibracyjne do Matlaba i pociąć je na realizacje typu T — „target” (związane z wystąpieniami litery „B”) i NT — „non-target” (pozostałe litery) o długości −200 do +800 ms wokół triggerów. Dla każdej realizacji odjąć trend liniowy.
  • Sygnał zmontować wzgl. „połączonych uszu” i wyświetlić średnie przebiegi dla warunku T i NT w układzie topograficznym — można wykorzystać w tym celu poniższy fragment kodu.

Poniżej zaprezentowany jest przykładowy skrypt do cięcia danych wokół znaczników. Działa on z plikami zawartymi w archiwum:

Plik:KalibracjaP300.tar.gz

Korzysta z funkcji pomocniczych dostępnych w dystrybucji obci w katalogu

/usr/share/openbci/analysis/matlab_obci_signal_processing

Openbci można pobrać z https://github.com/BrainTech/openbci

ZADANIE: Analiza CSP

Przegląd badań o P300: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715154/

Link do Read menager [1]

  • Wykonać analizę CSP wzmacniającą potencjał P300.
  • Zaprezentować średnią ze wszystkich kanałów źródłowych z warunku target (jeden kolor) i non-target (inny kolor) w subplotach ułożonych w prostokątnej siatce. Zaobserwować dla którego kanału średnie różnią się najbardziej. Czy jest związek tego kanału z wartościami własnymi?
  • Dla kanału najbardziej różnicującego wykonać mapki topograficzne (do wykonania tych mapek wykorzystać funkcję topoplot z pakietu eeglab) wektorów odpowiadających:
    • filtrowi przestrzennemu
    • rzutu topograficznego źródła na elektrody.

Filtry przestrzenne dla SSEP

ICA jako filtr przestrzenny

ZADANIE: Identyfikacja artefaktów

Proszę pobrać dane:

Pochodzą one z eksperymentu w którym osoba badana czytała słowa o różnych właściwościach wzbudzania emocji.

  • wczytaj je do eeglaba
  • wczytaj lokalizację kanałów z pliku Arousal-10-20-Cap.locs
  • obejrzyj przebiegi czasowe
  • odrzuć kanał z diodą (21) i z GSR (20)
  • zrób dekompozycję ICA
  • obejrzyj topografię komponentów
  • zidentyfikuj komponenty odpowiadające mruganiu i aktywności mięśniowej.
UWAGA
Aktualnie do wykrywania komponentów artefaktowych warto posłużyć się wtyczkami do eeglaba dostępnymi przez stronę:

https://sccn.ucsd.edu/eeglab/plugin_uploader/plugin_list_all.php

  • ICLabel
  • MARA

W raporcie:

  • zaprezentuj fragmenty sygnału zawierającego artefakty oczne i mięśniowe przed i po zastosowaniu czyszczenia poprzez usuwanie komponentów zdominowanych przez artefakty.
  • zaprezentuj topografię i przebiegi czasowe komponentów zidentyfikowanych jako artefakty oczne i mięśniowe.