FT-intuicja: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 32: Linia 32:
  
 
===Rozdzielczość (F)FT===
 
===Rozdzielczość (F)FT===
 +
 +
[[Plik:Ft sig digit.png|500px|bezramki|centruj]]
 
Transformata Fouriera jest przedstawieniem sygnału z bazie złożonej z funkcji <math>e^{i\omega t}</math>. Wymiar tej bazy powinien odpowiadać wymiarowi sygnału. Ponieważ dla każdej częstości zespolona transformata odtwarza amplitudę i fazę, to w widmie mocy będzie dwukrotnie mniej punktów niż w sygnale, dla którego liczono transformatę. Punkty w których liczymy transformatę Fouriera rozkładają się równomiernie od zera do częstości Nyquista, czyli połowy częstości próbkowania.  
 
Transformata Fouriera jest przedstawieniem sygnału z bazie złożonej z funkcji <math>e^{i\omega t}</math>. Wymiar tej bazy powinien odpowiadać wymiarowi sygnału. Ponieważ dla każdej częstości zespolona transformata odtwarza amplitudę i fazę, to w widmie mocy będzie dwukrotnie mniej punktów niż w sygnale, dla którego liczono transformatę. Punkty w których liczymy transformatę Fouriera rozkładają się równomiernie od zera do częstości Nyquista, czyli połowy częstości próbkowania.  
  

Wersja z 07:12, 3 wrz 2024

Intuicyjna intepretacja przekształcenia Fouriera

Spróbujmy nabrać potrzebnej na ćwiczeniach intuicji, traktując obliczenia w kategorii iloczynów skalarnych z kolejnymi sinusami o odpowiednio dobranych fazach. Weźmy przykładowy sygnał s o długości 256 punktów, złożony z dwóch sinusów a i b, s = a + b:


Ft sig s.png


=

Ft sig sa.png


+

Ft sig sb.png


Bazą będzie zbiór ortogonalnych sinusów[math]f(x)=\sin(kx), k=1,2,\ldots[/math] o częstościach od [math]\frac{1}{\mathrm{długość \, sygnału}}[/math] do częstości Nyquista.

Ort sines cont.png
[math](\ldots)[/math]


Policzmy iloczyny z sinusami o optymalnie dobranych fazach; jak widać na poniższym rysunku, sinus o częstości 2,4 jest podobny do składowej a sygnału s, ale miara podobieństwa, czyli wartość iloczynu skalarnego, zależy silnie od fazy sinusa, z którym liczymy iloczyn sygnału — gwiazdką oznaczyliśmy fazę, dla której iloczyn jest największy:

Ft phase.png

Podobne dopasowania można wykonać dla każdej częstości wzajemnie ortogonalnych sinusów o częstościach [math] \frac1T, \frac2T, \ldots[/math] do częstości Nyquista.

Ft freq.png

Wyniki — optymalne fazy i uzyskane dla nich maksymalne wartości iloczynów skalarnych — przedstawiamy na wykresach:

Fake spect.png

Rozdzielczość (F)FT

Ft sig digit.png

Transformata Fouriera jest przedstawieniem sygnału z bazie złożonej z funkcji [math]e^{i\omega t}[/math]. Wymiar tej bazy powinien odpowiadać wymiarowi sygnału. Ponieważ dla każdej częstości zespolona transformata odtwarza amplitudę i fazę, to w widmie mocy będzie dwukrotnie mniej punktów niż w sygnale, dla którego liczono transformatę. Punkty w których liczymy transformatę Fouriera rozkładają się równomiernie od zera do częstości Nyquista, czyli połowy częstości próbkowania.

Jako przykład spróbujmy rozszyfrować, skąd w przykładowym artykule o interfejsach mózg-komputer[1] pojawiają się dziwne częstości 6,83 i 7,03 Hz.

Mamy tam do czynienia z 3-sekundowymi odcinkami sygnału próbkowanego z częstością 200Hz. Aby umożliwić stosowanie szybkiej transformaty Fouriera (FFT) oraz zwiększyć rozdzielczość, sygnał jest dopełniany (zerami) do 1024 punktów. Tak więc 512 punktów (1024/2) będzie w tym przypadku rozłożonych między 0 a 100 Hz, co daje odstęp 100/512, czyli ok. 0.195 Hz między kolejnymi częstościami. Punkty najbliższe 7Hz to 35*100/512 = 6,83 i 36*100/512 = 7,03 Hz.



  1. Xiaorong Gao, Dingfeng Xu, Ming Cheng and Shangkai Gao, "A BCI-based environmental controller for the motion-disabled" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 137-140, June 2003, doi: 10.1109/TNSRE.2003.814449, https://web.archive.org/web/20091114205637id_/http://www.cis.gsu.edu/brainlab/papers/gao%202003%20-%2048N%20BCI.pdf