Pracownia EEG/EEG wlasnosci EEG spoczynkowego: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 139: Linia 139:
 
<equation id="uid93">
 
<equation id="uid93">
 
<math>
 
<math>
S(f) = \int _{-\infty }^{\infty }\gamma (\tau )e^{-2\pi i f \tau}d\tau </math>
+
S(f) = \int _{-\infty }^{\infty }\gamma (\tau )e^{-2\pi i f \tau}d\tau </math> &nbsp;&nbsp;&nbsp;&nbsp;(9)
 
</equation>
 
</equation>
  
Linia 253: Linia 253:
 
[[Plik:Fig_chinczyn2.png|thumb 200 px|center]]
 
[[Plik:Fig_chinczyn2.png|thumb 200 px|center]]
 
-->
 
-->
 
  
 
==Polecenie ==
 
==Polecenie ==

Wersja z 13:26, 23 wrz 2015

Estymacja funkcji autokowariancji, autokorelacji i koherencji sygnału.

Wstęp

Z funkcjami tymi spotkaliśmy się już na zajęciach z analizy sygnałów.

Funkcja autokowariancji sygnału charakteryzuje liniową zależność wartości tego sygnału w danej określonej chwili czasu od wartości (tego samego sygnału) w innej chwili. W przypadku stacjonarnych procesów stochastycznych, przebieg tej funkcji nie zależy od czasu. Oznacza to, że obliczając funkcję autokorelacji sygnału pomiędzy chwilą czasu [math]x(t)[/math] i [math]x(t+\tau )[/math] otrzymamy tę samą wartość, jak dla przypadku obliczania funkcji autokorelacji pomiędzy momentami [math]x(t + T)[/math] i [math]x(t + T+\tau )[/math], gdzie [math]T[/math] to dowolny przedział czasu. Innymi słowy, funkcja autokorelacji procesu stacjonarnego zależy tylko od odstępu czasu pomiędzy próbkami [math]\tau[/math], dla którego jest wyznaczana, a nie od konkretnej chwili czasu. Odrębną klasę sygnałów stanowią procesy niestacjonarne, w przypadku których funkcja autokorelacji będzie zależeć od czasu [math]t[/math] w którym jest obliczana. Estymator funkcji autokowariancji uzyskuje się poprzez obliczanie iloczynów wartości sygnału [math]x[/math] w chwilach czasu [math]t[/math] czyli [math]x(t)[/math] i wartości sygnału [math]x[/math] w chwili czasu t+τ czyli [math]x(t+\tau)[/math] i uśredniając wartości iloczynów po czasie [math]T[/math]:

[math] \gamma (\tau) = \mathrm{cov}(x(t),x(t-\tau ))=\mathrm{E}[(x(t)-\mu )(x(t-\tau )-\mu )] [/math]     (1)

gdzie:

[math] \mu = \mathrm{E}[x(t)] [/math]     (2)

W przypadku sygnałów ciągłych estymację tę można zapisać w poniższy sposób:

[math] \gamma (\tau ) = \frac{1}{T}\int _0^{T}(x(t)-\mu )(x(t-\tau )-\mu )dt [/math]     (3)

natomiast dla sygnałów dyskretnych jako:

[math] \gamma (k) = \frac{1}{N-1}\sum _{i=0}^{N-k}(x(i+k)-x_s)(x(i)-x_s) [/math]     (4)

gdzie:

[math] x_s = \frac{\sum _{i=0}^{N}x(i)}{N} [/math]     (5)

Funkcja autokowariancji może osiągać dowolne wartości, dlatego aby można było porównać przebieg tej funkcji np. pomiędzy dwoma sygnałami, wprowadzono wersję znormalizowaną tej funkcji - funkcję autokorelacji. Normalizacja ta wygląda następująco:

[math] \rho (k) = \frac{\gamma (\tau )}{\sigma^2} [/math]     (6)

gdzie:

[math] \sigma ^2 = \mathrm{E}[(x(t)-\mu )^2] [/math]     (7)

Wariancję sygnału ([math]\gamma (0)=\sigma ^2[/math]) można wyrazić przez funkcję autokowariancji dla przesunięcia [math]\tau =0[/math]. Wynika z tego, że funkcja korelacji przyjmuje wartości z zakresu [math][-1, \, 1][/math]. Ostatecznie estymator funkcji autokorelacji można zapisać jak poniżej:

[math] \rho(k) = \frac{\gamma (k)}{\gamma (0)} [/math]     (8)

Funkcję autokorelacji estymuje się w celu określenia, w jakim stopniu wartości sygnału w danej chwili czasu wpływają na wartości sygnału w kolejnych chwilach czasu. Ma to kluczowe znaczenie przy rozpoznawaniu rodzaju procesów fizycznych odpowiedzialnego za generowanie sygnału. Funkcja ta zawsze mam maksimum dla przesunięcia [math]\tau =0[/math].


Cechą charakterystyczną funkcji autokorelacji jest to, iż w przypadku sygnałów harmonicznych, przebieg funkcji ma charakter okresowy, z okresem takim samym jak okres badanego sygnału. W przypadku szumu, funkcja autokorelacji ma kształt funkcji delta Diraca.

Polecenie:

Zaimplementuj funkcję do obliczania funkcji korelacji zgodnie ze wzorem (4). Funkcja powinna przyjmować dwa wektory i maksymalne przesunięcie wzajemne tych wektorów, natomiast zwracać powinna wektor zawierający funkcję autokorelacji. Wywołanie przykładowe:

a = np.array([1,2,3])
print koreluj(a,a,2)

powinno dać wynik:

[-0.5  0.   1.   0.  -0.5]


Zadanie 1: Funkcje autokowariancji i autokorelacji

W tym zadaniu posłużymy się sygnałami zarejestrowanymi w punkcie 3. poprzedniego ćwiczenia. Zaobserwuj, na którym kanale rytm alfa osiąga najwyższą wartość. Następnie zaimplementuj w Pythonie następujące kroki:

  1. Wczytaj dane z wybranego kanału.
  2. Oblicz funkcję autokorelacji dla sygnału zarejestrowanego w warunkach, gdy osoba badana siedziała z otwartymi oczami. Narysuj autokorelogram, to jest wykres wartości funkcji autokorelacji względem przesunięcia [math]\tau [/math]. Oś [math]\tau [/math] wyskaluj w sekundach.
  3. Powtórz krok 2, tym razem za sygnału zebranego w warunkach czuwania z zamkniętymi oczami.
  4. Porównaj autokorelogramy.

Związek autokorelacji z widmem sygnału

Wstęp

Zgodnie z twierdzeniem Chinczyna, z którym zapoznaliśmy się na wykładzie z Analizy Sygnałów, widmową gęstość mocy sygnału można policzyć jako transformatę Fouriera funkcji autokowariancji:

[math] S(f) = \int _{-\infty }^{\infty }\gamma (\tau )e^{-2\pi i f \tau}d\tau [/math]     (9)

gdzie:

  • [math]f[/math] — częstość
  • [math]S(f)[/math] — gęstość widmowa mocy


Polecenie

Zaimplementuj funkcję obliczającą transformatę Fouriera dyskretyzując wzór (9) dla zadanego wektora częstości f i zadanej częstości próbkowania sygnału (tutaj 10.0):

Wywołanie przykładowe:

t= np.arange(0,1,0.1)
x = np.sin(2*np.pi*2*t)
f = np.arange(-5,5,1)
X,f = fourier(x,f,10.0)
print X

Powinno dać:

[  3.15975012e-16 +5.19678720e-16j   1.05325004e-16 +3.51083347e-16j
 -4.56408351e-16 -2.10650008e-16j   4.91516686e-16 +1.58113883e+00j
 -1.40433339e-16 -7.02166694e-17j   0.00000000e+00 +0.00000000e+00j
 -1.40433339e-16 +7.02166694e-17j   4.91516686e-16 -1.58113883e+00j
 -4.56408351e-16 +2.10650008e-16j   1.05325004e-16 -3.51083347e-16j]

Natomiast wywołanie:

t= np.arange(0,1,0.1)
x = np.sin(2*np.pi*2*t)
f = np.arange(-5,5,0.01)
X = fourier(x,f,10.0)
py.plot(f,np.abs(X))
py.show()

Powinno wytworzyć rysunek:

Fourier test.png


Zadanie 2: Związek autokorelacji z widmem sygnału

Oblicz gęstość widmową mocy sygnału zarejestrowanego w trakcie czuwania z zamkniętymi oczami, korzystając z twierdzenia Chinczyna oraz metodą Welcha. Znajdź częstość rytmu [math]\alpha[/math] dla osoby, która była badana.