TI/Programowanie dla Fizyków Medycznych/RRZ: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 33: Linia 33:
 
Możemy to zapisać w postaci dyskretnej
 
Możemy to zapisać w postaci dyskretnej
  
<math> x_{n+1}  \approx x_n + h f(t_n,x_n) </math>.
+
<math> x_{n+1}  = x_n + h f(t_n,x_n) </math>.
  
 
Wartość w kolejnej chwili czasu dana jest explicite poprzez wartość w chwili poprzedniej. Metoda ta nazywa się Explicit Euler. Możemy teraz zaimplementować ją w pythonie
 
Wartość w kolejnej chwili czasu dana jest explicite poprzez wartość w chwili poprzedniej. Metoda ta nazywa się Explicit Euler. Możemy teraz zaimplementować ją w pythonie
Linia 98: Linia 98:
  
 
<math> k_1=f(t_n,x_n) </math>.
 
<math> k_1=f(t_n,x_n) </math>.
 +
 
<math> k_2=f(t_n+h/2,x_n+h/2*k_1) </math>.
 
<math> k_2=f(t_n+h/2,x_n+h/2*k_1) </math>.
  
 
Nastepnie używamy pochodznej <math> k_2 </math> zamiast pochodznej <math> k_1 </math> do obliczenia wartości funkcji w kolejnym kroku czasowym.
 
Nastepnie używamy pochodznej <math> k_2 </math> zamiast pochodznej <math> k_1 </math> do obliczenia wartości funkcji w kolejnym kroku czasowym.
  
<math> x_{n+1}  \approx x_n + h k_2 </math>.
+
<math> x_{n+1}  = x_n + h k_2 </math>.
  
 
Przykładowa implementacja tej metody wygląda nastepująco
 
Przykładowa implementacja tej metody wygląda nastepująco
Linia 149: Linia 150:
 
[[Plik:img4.png]]
 
[[Plik:img4.png]]
  
 +
==Metoda Heuna==
 +
Kolejną metodą niewiele różniącą się od poprzedniej jest metoda Heuna. Zdefiniowana jest ona przez równania
 +
<math> k_1=f(t_n,x_n) </math>,
 +
 +
<math> k_2=f(t_n+h/2,x_n+h/2*k_1) </math>,
 +
 +
<math> x_{n+1}  = x_n + h k_2 </math>.
  
 +
Implementacja wygląda następująco
  
 
<source lang="python">
 
<source lang="python">
Linia 172: Linia 181:
 
         i+=1
 
         i+=1
 
     return t,x
 
     return t,x
 +
</source>
 +
 +
==Runge-Kutta czwartego rzędu==
 +
Ostatnią metodą, którą omówimy jest najbardziej popularna metoda zwana w skrócie RK4. Metoda to uznawana jest za kanoniczną i w większości zastosowań dającą najlepsze wyniki. Metody wyższego rzędu nie wnoszą już do wyniku znaczącej poprawy. Jak sugeruje nazwa metody, jej rząd to 4, czyli w każdym kroku czasowym czterokrotnie wywołujemy funkcję f. Metoda ta zdefiniowana jest wzorami
 +
 +
<math>    k_1 = f \left( t_n, x_n \right) </math>,
 +
 +
<math>    k_2 = f \left( t_n + {h \over 2}, x_n + {1 \over 2} k_1 \right) </math>,
 +
 +
<math>    k_3 = f \left( t_n + {h \over 2}, x_n + {1 \over 2} k_2 \right) </math>,
 +
 +
<math>    k_4 = f \left( t_n + h, x_n + k_3 \right) </math>,
 +
 +
<math>    x_{n+1} = x_n + {h \over 6} (k_1 + 2k_2 + 2k_3 + k_4) </math>,
  
 +
a implementacja wygląda następująco
 +
 +
<source lang="python">
 
def RK4(f,x0,t0,tk,h):  
 
def RK4(f,x0,t0,tk,h):  
 
     #generujemy wektor czasow
 
     #generujemy wektor czasow
Linia 195: Linia 221:
 
     return t,x
 
     return t,x
  
#Metoda Verlet sluzy do rozw. rownan rowniczkowych typu:
 
# d^2 x(t)/dt^2=a(x(t))
 
# x_(n+1)=x_n+v_n*h+1/2 a(x_n)*h^2
 
# v_n=(x_n-x_(n-1))/h
 
#podstawiamy do poprzedniego
 
# x_(n+1)=2*x_n-x_(n-1)+1/2 a(x_n)*h^2
 
#przekształcają otrzymamy
 
# x_(n-1)=2*x_n-x_(n+1)+1/2 a(x_n)*h^2
 
#zatem algorytm jest symetryczny w czasie
 
#rownanie ma postac:
 
#d(x,x')/dt=(x',x'')=f(t,(x,x'))
 
def Verlet(f,x0,t0,tk,h):
 
    #generujemy wektor czasow
 
    t=np.arange(t0,tk,h)
 
    #liczba krokow czasowych
 
    N=len(t)
 
    if len(x0)!=2:
 
        print 'algorytm dziala tylko dla rown. 2 rzedu'
 
        return None
 
    x=np.zeros((N,2))
 
    #wpisujemy wartosc poczatkowa
 
    x[0]=np.array(x0)
 
    x[1]=np.array(x0)
 
    #index
 
    i=2
 
    #petla glowna
 
    while (i<N):
 
        x_i=2*x[i-1][0]-x[i-2][0]+0.5*h*h*f(t[i-1],x[i-1])[1]
 
        v_i=(x_i-x[i-1][0])/h
 
        x[i]=np.array([x_i,v_i])
 
        i+=1
 
    return t,x
 
  
#tłumienie
 
#t,x=EE(lambda x:-x,1.0,0.0,100.0,0.01)
 
#py.plot(t,x)
 
#py.show()
 
  
  
Linia 243: Linia 233:
 
py.show()
 
py.show()
 
</source>
 
</source>
 +
 
===Wahadło===
 
===Wahadło===
 
<source lang="python">
 
<source lang="python">

Wersja z 10:57, 6 cze 2015

Równania różniczkowe zwyczajne

Zajmieny się teraz problemem numerycznego rozwiązywania równań różniczkowych zwyczajnych o postaci:

[math] \frac{dy(t)}{dt} = f(t,y(t))[/math],

z warunkeim początkowym

[math]y(t_0)=y_0[/math].

Zauważmy, że przykładowe równanie różniczkowe drugiego rzędu

[math] \frac{d^2 x(t)}{dt^2} = \omega(t,x(t))[/math],

można zapisać jako

[math] \frac{d}{dt} \binom{x(t)}{x'(t)} = \binom{x'(t)}{\omega(t,x(t))}[/math].

W analogiczny sposób równanie dowolnego rzędy możemy zapisać jako wektorowe równanie różniczkowe pierwszego rzędu. Wystarczy zatem, że skupimy się na rozwiązywaniu równań pierwszego rzędu, Rozwiązaniem postawionego problemu są ciągłe funkcje zmiennej czasowej t. Rozwiązanie numeryczne takiego problemu ogranicza się jednak do znalezienia wartości funkcji y(t) w skończonej liczbie punktów czasowych. W najprostrzym przypadku (do którego się tutaj ograniczymy) zakładamy, że punkty te są od siebie równo oddalone, a odległość między nimi nazywamy krokiem czasowym i tradycyjnie oznaczamy literą h. Zatem rozwiązanie równania na przedziale [math](t_0,t_k)[/math] sprwadzamy do rozwiązania w sekwencji czasów [math]t_0, t+1=t_0+h,t_2=t_0+2h,...,t_k=Nh[/math]. Poprzez [math]x_n[/math] oznaczać będziemy numeryczne przybliżenie ścisłego rozwiązania [math]x(t_n)[/math].

Metoda Eulera

Najprostszą metodą numeryczną rozwiązywania równań różniczkowych jest metoda Eulera. Przybliżmy pochodzną czasową występującą po lewej stronie równania przez iloraz różnicowy

[math] \frac{d x(t)}{dt} \approx \frac{x(t+h)-x(t)}{h}[/math],

przekształacjąc uzyskujemy

[math] x(t+h) \approx x(t)+ h \frac{d x(t)}{dt} [/math]

a po podstawieniu rozwiązywanego równania mamy

[math] x(t+h) \approx x(t)+ h f(t,x(t)) [/math].

Możemy to zapisać w postaci dyskretnej

[math] x_{n+1} = x_n + h f(t_n,x_n) [/math].

Wartość w kolejnej chwili czasu dana jest explicite poprzez wartość w chwili poprzedniej. Metoda ta nazywa się Explicit Euler. Możemy teraz zaimplementować ją w pythonie

import numpy as np
import pylab as py

#rozwiazujemy rownanie dx(t)/dt=f(t,x)

#metoda Explicit Euler
#f - funkcja f z rownania
#x0-wartosc poczatkowa
#t0-czas poczatkowy
#tk-czas koncowy
#h-krok czasowy

def EE(f,x0,t0,tk,h): 
    #generujemy wektor czasow
    t=np.arange(t0,tk,h)

    #liczba krokow czasowych
    N=len(t)

    #wektor wynikowy
    if hasattr(x0, "__len__"): x=np.zeros((N,len(x0))) # gdy mamy doczynienia w równaniem wektorowym
    else: x=np.zeros(N) #dla przypadku skalarnego

    #wpisujemy wartosc poczatkowa
    x[0]=np.array(x0)
    #index
    i=1
    #petla glowna
    while (i<N):
        x[i]=np.array(x[i-1]+h*f(t[i-1],x[i-1]))
        i+=1
    return t,x

Najłatwiej będzie przetestować napisaną metodę na równaniu którego ścisłe rozwiązanie jest znane.Zacznijmy zatem od równania oscylatora harmonicznego

def oscylator(t,y):
    x=y[0]
    xdot=y[1]
    return np.array([xdot,-x])

Rozwiążmy to równanie z warunkeim początkowym [1.0,1.0] i od czasu od 0 do 100.

t,x=EE(oscylator,[1.0,1.0],0.0,100,0.01)
py.plot(t,x[:,0])
py.show()

rozwiązanie wygląda wówczas nastepująco

Img01.png

Jeżeli zaś wydłuzymy czas symulacji to 1000 otrzymamy

Img2.png

Amplituta oscylacji rośnie wykładniczo i rozwiązanie numeryczne bardzo szybko przestaje mieć cokolwiek wspólnego ze ścisłym rozwiązaniem którego amplituda jest przecież stała. Metoda Explicit Euler już po kilku krokach czasowych przestaje przypominać ścisłe rozwiązanie. Niestety trudno jest zupełnie wyeliminować to zjawisko, za to możemy użyć metody, która znacznie wolniej będzie się oddalać od ścisłego rozwiązania. Zauważmy, że w metodzie Explicit Euler w każdym kroku czasowym tylko raz liczyliśmy wartość funkcji f. Liczbę wywołan funkcji f w każdym kroku czasowym nazywamy rzędem metody, stąd Explicit Euler jest metodą pierwszego rzędu. Wprowadźmy teraz przykładowe metody rzędu drugiego

Metoda Żabiego Skoku

W poprzedniej metodzie liczyliśmy wartość funkcji f w chwili [math]t_n[/math], która była pochodzną po czasie naszego ścisłego rozwiązania. Kolejny punkt [math]x_{n+1}[/math] był liczony z przybliżenia liniowego funkcji w chwili poprzedniej. Jeżeli faktyczna trajektoria ma niezerową drugą pochodzną to takie liniowe przybliżenie zawsze będzie nas oddalało od ścisłego rozwiązania. Dosyć prostym pomysłem na poprawienie zbieżności metody jest tak zwany żabi skok. Policzmy najpierw wartość zmiennej x przesuwając się w czasie o h/2 i policzmy wówczas pochodną, którą oznaczmy przez [math]k_2[/math]

[math] k_1=f(t_n,x_n) [/math].

[math] k_2=f(t_n+h/2,x_n+h/2*k_1) [/math].

Nastepnie używamy pochodznej [math] k_2 [/math] zamiast pochodznej [math] k_1 [/math] do obliczenia wartości funkcji w kolejnym kroku czasowym.

[math] x_{n+1} = x_n + h k_2 [/math].

Przykładowa implementacja tej metody wygląda nastepująco

def leapfrog(f,x0,t0,tk,h): 

    #generujemy wektor czasow
    t=np.arange(t0,tk,h)

    #liczba krokow czasowych
    N=len(t)

    #wektor wynikowy
    if hasattr(x0, "__len__"): x=np.zeros((N,len(x0)))
    else: x=np.zeros(N)

    #wpisujemy wartosc poczatkowa
    x[0]=np.array(x0)

    #index
    i=1

    #petla glowna
    while (i<N):
        k1=f(t[i-1],x[i-1])
        k2=f(t[i-1]+h*0.5,x[i-1]+0.5*h*k1)
        x[i]=np.array(x[i-1]+h*k2)
        i+=1
    return t,x

Rozwiązanie równania oscylatora tą metodą dla identycznych jak poprzednio czasów da nastepujące wyniki

t,x=leapfrog(oscylator,[1.0,1.0],0.0,100,0.01)
py.plot(t,x[:,0])
py.show()

Img3.png

t,x=leapfrog(oscylator,[1.0,1.0],0.0,1000,0.01)
py.plot(t,x[:,0])
py.show()

Img4.png

Metoda Heuna

Kolejną metodą niewiele różniącą się od poprzedniej jest metoda Heuna. Zdefiniowana jest ona przez równania [math] k_1=f(t_n,x_n) [/math],

[math] k_2=f(t_n+h/2,x_n+h/2*k_1) [/math],

[math] x_{n+1} = x_n + h k_2 [/math].

Implementacja wygląda następująco

def Heun(f,x0,t0,tk,h): 
    #generujemy wektor czasow
    t=np.arange(t0,tk,h)
    #liczba krokow czasowych
    N=len(t)
    #wektor wynikowy
    if hasattr(x0, "__len__"): x=np.zeros((N,len(x0)))
    else: x=np.zeros(N)
    #wpisujemy wartosc poczatkowa
    x[0]=np.array(x0)
    #index
    i=1
    #petla glowna
    while (i<N):
        k1=f(t[i-1],x[i-1])
        k2=f(t[i-1]+h*0.5,x[i-1]+0.5*h*k1)
        x[i]=np.array(x[i-1]+h*0.5*(k1+k2))
        i+=1
    return t,x

Runge-Kutta czwartego rzędu

Ostatnią metodą, którą omówimy jest najbardziej popularna metoda zwana w skrócie RK4. Metoda to uznawana jest za kanoniczną i w większości zastosowań dającą najlepsze wyniki. Metody wyższego rzędu nie wnoszą już do wyniku znaczącej poprawy. Jak sugeruje nazwa metody, jej rząd to 4, czyli w każdym kroku czasowym czterokrotnie wywołujemy funkcję f. Metoda ta zdefiniowana jest wzorami

[math] k_1 = f \left( t_n, x_n \right) [/math],

[math] k_2 = f \left( t_n + {h \over 2}, x_n + {1 \over 2} k_1 \right) [/math],

[math] k_3 = f \left( t_n + {h \over 2}, x_n + {1 \over 2} k_2 \right) [/math],

[math] k_4 = f \left( t_n + h, x_n + k_3 \right) [/math],

[math] x_{n+1} = x_n + {h \over 6} (k_1 + 2k_2 + 2k_3 + k_4) [/math],

a implementacja wygląda następująco

def RK4(f,x0,t0,tk,h): 
    #generujemy wektor czasow
    t=np.arange(t0,tk,h)
    #liczba krokow czasowych
    N=len(t)
    #wektor wynikowy
    if hasattr(x0, "__len__"): x=np.zeros((N,len(x0)))
    else: x=np.zeros(N)
    #wpisujemy wartosc poczatkowa
    x[0]=np.array(x0)
    #index
    i=1
    #petla glowna
    while (i<N):
        k1=h*f(t[i-1],x[i-1])
        k2=h*f(t[i-1]+h*0.5,x[i-1]+0.5*k1)
        k3=h*f(t[i-1]+h*0.5,x[i-1]+0.5*k2)
        k4=h*f(t[i-1]+h,x[i-1]+k3)
        x[i]=np.array(x[i-1]+(k1+2.0*k2+2.0*k3+k4)/6)
        i+=1
    return t,x





#t,x=EE(oscylator,[1.0,1.0],0.0,1000.0,0.01)
t,x=leapfrog(oscylator,[1.0,1.0],0.0,100000.0,0.1)
py.plot(x[:,0],x[:,1])
py.show()
#Ec=map(lambda z:z[0]**2+z[1]**2,x)
#py.plot(t,Ec)
py.show()

Wahadło

import numpy as np
import pylab as py

def RK4(f,x0,t0,tk,h): 
    #generujemy wektor czasow
    t=np.arange(t0,tk,h)
    #liczba krokow czasowych
    N=len(t)
    #wektor wynikowy
    if hasattr(x0, "__len__"): x=np.zeros((N,len(x0)))
    else: x=np.zeros(N)
    #wpisujemy wartosc poczatkowa
    x[0]=np.array(x0)
    #index
    i=1
    #petla glowna
    while (i<N):
        k1=h*f(t[i-1],x[i-1])
        k2=h*f(t[i-1]+h*0.5,x[i-1]+0.5*k1)
        k3=h*f(t[i-1]+h*0.5,x[i-1]+0.5*k2)
        k4=h*f(t[i-1]+h,x[i-1]+k3)
        x[i]=np.array(x[i-1]+(k1+2.0*k2+2.0*k3+k4)/6)
        i+=1
    return t,x


#oscylator harmoniczny
def oscylator(t,y):
    f0=1.0
    w0=1.0
    
    x=y[0]
    xdot=y[1]
    return np.array([xdot,f0*np.cos(oscylator.W*t)-oscylator.Gamma*xdot-w0*w0*x])

def amplituda(x):
    lista=x[2000:,0]
    return (max(lista)-min(lista))*0.5

def okres(t,x):
    t=t[2000:]
    x=x[2000:,0]
    czasyMaksimow=[]
    for i in xrange(1,len(x)-1):
        if x[i]>x[i-1] and x[i]>x[i+1]:
            czasyMaksimow.append(t[i])
    return np.mean(np.diff(czasyMaksimow))
    

oscylator.W=1.0
oscylator.Gamma=0.1

#Amplituda wahań w funkcji Omega (częstości wymuszania)
#Omegas=np.arange(0.1,3.0,0.05)
#amp=[amplituda(RK4(oscylator,[0.0,1.0],0.0,400.0,0.1)[1]) for oscylator.W in Omegas]
#py.plot(Omegas,amp)
#py.show()

#Okres wahań w funkcji Omega (częstości wymuszania)
#Omegas=np.arange(0.1,3.0,0.1)
#okresy=[okres(*RK4(oscylator,[0.0,1.0],0.0,400.0,0.1)) for oscylator.W in Omegas]
#py.plot(Omegas,okresy)
#py.show()

#Amplituda wahań w funkcji wsp. tłumienia Gamma
Gammas=np.arange(0.1,3.0,0.1)
amp=[amplituda(RK4(oscylator,[0.0,1.0],0.0,400.0,0.1)[1]) for oscylator.Gamma in Gammas]
py.plot(Gammas,amp)
py.show()


Zadanie

Rozwiąż układ równań różniczkowych Lorenza dany wzorami

[math] \begin{cases}\dot x=\sigma y-\sigma x\\\dot y=-xz+rx-y\\\dot z=xy-bz\end{cases}, [/math]

metodą całkowania Rungego–Kutty drugiego rzędu z α = 2/3, czyli

[math] k_1 &= f(t_n,y_n), \\k_2 &= f(t_n + \tfrac{2}{3}h, y_n + \tfrac{2}{3}h k_1), \\y_{n+1} &= y_n + h\left(\tfrac{1}{4}k_1+\tfrac{3}{4}k_2\right). [/math]

Przyjmij sigma=10, b=8/3, r=99.96, krok czasowy h=0.005 i warunki początkowe x=1,y=0,z=0. Wykonaj 8000 kroków czasowych. Układ po pewnym czasie zacznie poruszać się po pewnej periodycznej trajektorii. Wykonaj 3 rysunki TEJ PERIODYCZNEJ TRAJEKTORII (bez okresu dochodzenia do niej) w płaszczyznach (x,y), (y,z) i (z,x). Wypisz na ekranie przedziały wartości jakie przyjmują zmienne x,y i z na periodycznej trajektorii oraz okres trajektorii periodycznej.

import numpy as np
import pylab as py

#rozwiazujemy rownanie dx(t)/dt=f(t,x)

#metoda Explicit Euler
#f - funkcja f z rownania
#x0-wartosc poczatkowa
#t0-czas poczatkowy
#tk-czas koncowy
#h-krok czasowy

def RK2(f,x0,t0,tk,h): 
    #generujemy wektor czasow
    t=np.arange(t0,tk,h)
    #liczba krokow czasowych
    N=len(t)
    #wektor wynikowy
    if hasattr(x0, "__len__"): x=np.zeros((N,len(x0)))
    else: x=np.zeros(N)
    #wpisujemy wartosc poczatkowa
    x[0]=np.array(x0)
    #index
    i=1
    #petla glowna
    while (i<N):
        k1=h*f(t[i-1],x[i-1])
        k2=h*f(t[i-1]+h*2.0/3.0,x[i-1]+k1*2.0/3.0)
        x[i]=np.array(x[i-1]+0.25*k1+0.75*k2)
        i+=1
    return t,x

#uklad Lorenza
def Lorenza(t,y):
    sigma=10.0
    b=8.0/3
    r=99.96
    xx=y[0]
    yy=y[1]
    zz=y[2]
    xdot=sigma*(yy-xx)
    ydot=-xx*zz+r*xx-yy
    zdot=xx*yy-b*zz
    return np.array([xdot,ydot,zdot])

t,x=RK2(Lorenza,[1.0,0.0,0.0],0.0,40.0,0.005)
py.plot(x[2500:,0],x[2500:,1])
py.show()
py.plot(x[2500:,1],x[2500:,2])
py.show()
py.plot(x[2500:,2],x[2500:,0])
py.show()

#szukanie okresu
prog=140
lista=[]
for i in range(2500,8000):
    if (x[i-1,2]<prog) and (x[i,2]>prog): lista.append(i)
print 'okres to:',np.mean(np.diff(lista)*0.005)
print 'zmienna x przyjmuje wartosci z zakresu: (',min(x[2500:,0]),',',max(x[2500:,0]),')'
print 'zmienna y przyjmuje wartosci z zakresu: (',min(x[2500:,1]),',',max(x[2500:,1]),')'
print 'zmienna z przyjmuje wartosci z zakresu: (',min(x[2500:,2]),',',max(x[2500:,2]),')'

"Programowanie dla Fizyków Medycznych"