Ćwiczenia 1.1: Różnice pomiędzy wersjami
Z Brain-wiki
Linia 11: | Linia 11: | ||
Łatwo sobie wyobrazić, że tą koncepcję można uogólnić na dowolną liczbę współrzędnych (wymiarów). Wtedy trudniej jest przedstawić go w postaci strzałki, ale możemy przedstawić go np. tak, że kolejne współrzędne rysyjemy jako punkty na dwuwymiarowej płaszczyźnie (nr współrzędnej, wartość współrzędnej): | Łatwo sobie wyobrazić, że tą koncepcję można uogólnić na dowolną liczbę współrzędnych (wymiarów). Wtedy trudniej jest przedstawić go w postaci strzałki, ale możemy przedstawić go np. tak, że kolejne współrzędne rysyjemy jako punkty na dwuwymiarowej płaszczyźnie (nr współrzędnej, wartość współrzędnej): | ||
− | <source lang = | + | <source lang = python> |
import pylab as py | import pylab as py | ||
import numpy as np | import numpy as np |
Wersja z 17:15, 9 paź 2016
Spis treści
Sygnał jako wekotr
Jak to rozumieć?
W najprostszej wersji znanej ze szkoły wektory rozumiane są tak jak na tym rysunku:
Koncepcje wektora można uogólnić i rozumieć go jako uporządkowany ciąg liczb, czyli współrzędnych wektora:
Łatwo sobie wyobrazić, że tą koncepcję można uogólnić na dowolną liczbę współrzędnych (wymiarów). Wtedy trudniej jest przedstawić go w postaci strzałki, ale możemy przedstawić go np. tak, że kolejne współrzędne rysyjemy jako punkty na dwuwymiarowej płaszczyźnie (nr współrzędnej, wartość współrzędnej):
import pylab as py
import numpy as np
A = np.array([2,3])
py.subplot(2,1,1)
py.plot(A,'o')
py.xlim([-0.1, 1.1])
py.ylim([0,3.1])
py.ylabel('Wartość')
py.subplot(2,1,2)
py.stem(A)
py.xlim([-0.1, 1.1])
py.ylim([0,3.1])
py.ylabel('Wartość')
py.xlabel('Nr. próbki')
py.show()