Pracownia Sygnałów Biologicznych/Zajecia 5 6: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 46: Linia 46:
 
=== Ćwiczenie: zapoznanie się z sygnałami rejestrowanymi przez inwazyjne EMG===
 
=== Ćwiczenie: zapoznanie się z sygnałami rejestrowanymi przez inwazyjne EMG===
 
Proszę wczytać i przyjrzeć się sygnałom zdrowy.bin, miopatia.bin, neuropatia.bin. Sygnały są zapisane jako dtype='float64'
 
Proszę wczytać i przyjrzeć się sygnałom zdrowy.bin, miopatia.bin, neuropatia.bin. Sygnały są zapisane jako dtype='float64'
Częstość próbkowania 4000Hz, amplitudy zapisane są w mV. Dane pochodzą z:  
+
Częstość próbkowania 4000Hz, amplitudy zapisane są w mV. Dane pochodzą z bazy Physionet: https://physionet.org/content/emgdb/1.0.0/
  
 +
Proszę przeczytać informację o tych danych. W raporcie proszę napisać istotne informacje o tych sygnałach i  wybrać charakterystyczne fragmenty typowe dla danego stanu klinicznego.
  
 
=== Ćwiczenie: detekcja aktywności wybranej jednostki ruchowej===
 
=== Ćwiczenie: detekcja aktywności wybranej jednostki ruchowej===

Wersja z 19:21, 27 mar 2020

Pomiar EMG

Wstęp

Filmik ilustrujący działanie mięśni


Sygnały elektro-fizjologiczne pochodzące z mięśni nazywa się elektromiogramem (EMG). Elektromiografia jest jednym z podstawowych badań w rozpoznawaniu chorób mięśni i nerwów obwodowych. Ma ona również wiele zastosowań naukowych. Amplituda sygnału EMG wynosi od około kilkudziesięciu μV do 10 mV, zaś pasmo sygnału obejmuje zakres częstości od 2 do 5000 Hz, przy czym największa energia sygnału znajduje się w przedziale od 50 do 150 Hz.

Istnieją dwa sposoby pomiaru sygnałów EMG — badanie igłowe i powierzchniowe. W badaniu igłowym EMG, elektroda igłowa lub igła z dwoma elektrodami wbijana jest w mięsień lub w nerw ruchowy. Następnie obserwuje się aktywność elektryczną mięśni w spoczynku i podczas wysiłku.

Przykłady elektromiogramów. Panel górny — pacjent zdrowy. Panel środkowy — pacjent ze zmianami w nerwach obwodowych (neuropatia). Panel dolny — pacjent ze zmianami w mięśniach (miopatia).

Badanie powierzchniowe EMG wykonuje się z użyciem elektrod samoprzylepnych, umieszczonych na powierzchni skóry. Ocenie podlegają mięśnie położone powierzchownie lub grupy mięśni. Obydwie metody mają swoje wady i zalety. Metoda „igłowa” umożliwia rejestrację sygnału EMG z wybranego mięśnia, podczas gdy metoda powierzchniowa rejestruje zbiorczą aktywność wielu jednostek ruchowych. Jednakże, w przeciwieństwie do metody powierzchniowej, metoda igłowa jest badaniem inwazyjnym i czasem bolesnym, które wykonywane jest w ośrodku klinicznym.

Na zajęciach przeprowadzimy powierzchniowy pomiar EMG (w literaturze często takie badanie oznacza się skrótem sEMG, s od ang. surface — powierzchnia). W tym celu umieścimy elektrody na skórze, nad mięśniami, których aktywność chcemy zbadać.


Filmik o zastosowaniach klinicznych EMG

Lektura: Reaz MBI, Hussain MS and Mohd-Yasin F. Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. Online 2006; 8(1): 11-35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1455479/pdf/bpo_v8_p11_m115.pdf

Źródła błędu

Rejestracja sygnału EMG, podobnie jak pomiar innych sygnały bioelektrycznych podlega pewnym zakłóceniom. Są to przede wszystkim

  • artefakty ruchowe,
  • artefakty związane z obecnością zewnętrznych pól elektromagnetycznych.

Artefakty ruchowe

W wyniku aktywacji mięśnia, ulega on skróceniu, co powoduje przemieszczanie się względem siebie mięśnia, skóry i elektrody. Przemieszczenie to powoduje zmianę amplitudy mierzonego sygnału (np. elektroda oddala się od mięśnia), zmianę potencjału DC (potencjału powstającego na granicy skóra-elektrolit) oraz rozciągniecie skóry. Jak pamiętamy z pierwszych zajęć pomiędzy naskórkiem a skórą właściwą istnieje różnica potencjałów o amplitudzie dochodzącej do 30 mV. W trakcie rozciągania skóry, wartość to spada do 25 mV. Powstająca zmiana potencjału, o wartości około 5 mV jest w porównaniu z sygnałem EMG bardzo znacząca.

Artefakty sieciowe

Artefakty sieciowe stanowią poważny problem w przypadku rejestracji sygnału EMG. Zwykle bowiem nie obserwujemy tylko zakłócenia o jednej częstości, równej częstości zmian napięcia w gniazdku zasilającym (np. w Polsce jest to 50 Hz), lecz również wyższe harmoniczne tej częstości (w Polsce będzie to 100 Hz, 150 Hz, 200 Hz, itd). Jak można zauważyć, częstości 50 Hz, 100 Hz i 150 Hz znajdują się w paśmie, w którym sygnał EMG ma największą energię. Stosowanie filtrów pasmowo zaporowych w takim przypadku nie jest wskazane, bowiem filtry jak wiemy nie tłumią ściśle określonych częstości tylko pasma o pewnej szerokości (np. 45-55 Hz, 95-105 Hz, itd). W efekcie znaczna część interesującego nas pasma sygnału EMG zostałaby odrzucona. Aby zminimalizować przenikanie od rejestrowanego sygnału EMG sygnału sieciowego o częstości 50 Hz należy zadbać o niską impedancję pomiędzy elektrodą a skóra oraz powinno mierzyć się sygnały różnicowe.

Artefakty sieciowo-ruchowe

Podczas ruchu mięśnia ciało może ulec przemieszczeniu, co spowoduje ruch kabla w przestrzeni pomiędzy elektrodą a wzmacniaczem. W przestrzeni tej istnieje pole elektromagnetyczne, wywołane zasilaniem sieci elektrycznej. Ruch kabla w polu elektromagnetycznym może powodować zaburzenia sygnału o częstości 50 Hz. Ponadto układ elektrody-kable-wzmacniacz, tworzy pewne ramki, które w trakcie ruchu zmieniają kształt a także powierzchnię. Zgodnie z Prawem Indukcji Faraday'a zmiana strumienia magnetycznego powoduje powstawanie siły elektromotorycznej, która również może zakłócać pomiar.

Artefakty ruchowe można w większości wyeliminować przez zastosowanie filtru górnoprzepustowego, którego częstość odcięcia ustawia się w granicy od 10 do 20 Hz. Aby wyeliminować artefakty związane z ruchem kabla w polu elektromagnetycznym można zastosować tzw. elektrody aktywne. W elektrodach tych (miniaturowy) wzmacniacz znajduje się na elektrodzie. Wzmacnianie sygnału na elektrodzie zwiększa względną czułość układu na sygnał mierzony na elektrodzie w stosunku do zaburzenia związanego z ruchem kabla. Innym rozwiązaniem tego problemu jest zastosowanie kabli ekranowanych. Kable TMSI, których używamy na Pracowni są kablami ekranowanymi. W kablach tych, pomiędzy dwiema warstwami izolatora, istnieje dodatkowa osłona z przewodnika podłączona do wzmacniacza. Dzięki temu, zewnętrzne pole elektromagnetyczne nie przenika do środka kabla. Dodatkowo, aby wyeliminować indukowanie się ładunków w wyniku tarcia pomiędzy izolatorami a osłoną, jest ona częściowo pokryta warstwą węgla.

Sygnały do naszych zajęć znajdują się w tym katalogu: https://drive.google.com/drive/folders/18skluB3j2CHMXX8l1UmIvNXR1tZYGU0C?usp=sharing Proszę je pobrać.


Ćwiczenia

Ćwiczenie: zapoznanie się z sygnałami rejestrowanymi przez inwazyjne EMG

Proszę wczytać i przyjrzeć się sygnałom zdrowy.bin, miopatia.bin, neuropatia.bin. Sygnały są zapisane jako dtype='float64' Częstość próbkowania 4000Hz, amplitudy zapisane są w mV. Dane pochodzą z bazy Physionet: https://physionet.org/content/emgdb/1.0.0/

Proszę przeczytać informację o tych danych. W raporcie proszę napisać istotne informacje o tych sygnałach i wybrać charakterystyczne fragmenty typowe dla danego stanu klinicznego.

Ćwiczenie: detekcja aktywności wybranej jednostki ruchowej

Będziemy analizować sygnał:


Ćwiczenie I: Badanie zależności sygnału EMG od obciążenia

  • umieść elektrodę GND na wewnętrznej części przedramienia, w połowie jego długości,
  • umieść dwie elektrody do rejestracji sygnału EMG na mięśniu dwugłowym ramienia (popularnie zwanym bicepsem). Kable tych elektrod połącz z unipolarnymi wejściami wzmacniacza numer 1 i 2.
  • ustaw częstość próbkowania sygnału na 1024Hz
  • przygotuj odpowiedni montaż, aby sygnał można było rejestrować bipolarnie,
  • dobierz odpowiednio filtry górnoprzepustowe,
  • opisz obserwowany sygnał.
  • zarejestruj około 1 min. sygnału spoczynnkowego i około 1 min sygnału przy obciążeniu mięśnia:
    • oblicz ich średnią amplitudę (odchylenie standardowe)
    • wykreśl oba sygnały
    • oraz ich widma.
  • Zbadaj zależność parametrów sygnału EMG od obciązenia mięśnia:
    • dla kilku wartości obciążenia (np. do siatki na zakupy dokładamy kolejno 0.5 litrowe butelki z wodą) wykonaj pomiar sygnału przez 30 s
    • pomiędzy pomiarami robić przerwy na odpoczynek mięśnia
    • pomiar powtórzyć w odwrotnej kolejności obciązania
    • sporządzić odpowiednie wykresy
  • Zbadaj zależność sygnału EMG od czasu obciążania przy znacznym obciążeniu. Pytanie badawcze: czy jakieś paramtery tego sygnału ulegają zmianie wraz ze zmęczeniem mięśnia?

Ćwiczenie II: Badnanie przebiegu sygnału EMG względem trigera

Wykonaj następujące doświadczenie:
1. Elektrodę GND umieść na wewnętrznej stronie przedramienia w połowie jego długości.
2. Umieść elektrody do rejestracji sygnału EMG na kciuku lub u nasady kciuka.
3. Do wejścia trigger wzmacniacza podłącz przycisk.
4. Uruchom program Svarog, skonfiguruj go do rejestracji sygnału EMG i rozpocznij nagrywanie sygnału.
5. Naciśnij 50 razy przycisk kciukiem, przy czym zachowaj około 2 sekundowy odstęp w czasie pomiędzy kolejnymi naciśnięciami.

Naciśniecie przycisku spowoduje wysłanie na wejście trigger wzmacniacza sygnału w kształcie schodka prostokątnego. W momencie kiedy podejmiesz decyzję o naciśnięciu przycisku, upłynie pewien krótki okres czasu, zanim kciuk opadnie na przycisk, który z kolei uruchomi obwód generujące sygnał wysyłany na wejście trigger. Możemy się spodziewać, że sygnał EMG związany z wykonywanym przez kciuk ruchem będzie poprzedzał sygnał elektryczny wysłany przez układ przycisku. Po wykonaniu eksperymentu Twoim zadaniem będzie oszacowanie różnicy w czasie pomiędzy pojawieniem się sygnału na kanale trigger i sygnałem EMG. W tym celu napisz program, który:
1. Wczyta zarejestrowany sygnał.
2. Przefiltruje filtrem górnoprzepustowym sygnał EMG.
3. Wyznaczy początki wykonywanych przez kciuk ruchów, w oparciu o analizę wariancji sygnału EMG.
4. Narysuje histogram różnicy czasu [math]\Delta T = t_p - t_{emg}[/math], gdzie [math]t_p[/math] — czas wykonania ruchu kciukiem wyznaczony przy pomocy sygnału z kanału trigger, [math]t_{emg}[/math] — czas wykonania ruchu kciukiem wyznaczony na podstawie sygnału EMG.

Ćwiczenie III: Wykorzystanie pomiaru EMG do sterowania on-line

Przykładowy fragment kodu example.py umożliwiający odbieranie sygnału on line w pythonie przedstawiony jest poniżej.

from obci_cpp_amplifiers.amplifiers import TmsiCppAmplifier
import numpy as np
amps = TmsiCppAmplifier.get_available_amplifiers('usb')
amp = TmsiCppAmplifier(amps[0])

amp.sampling_rate = 512

amp.start_sampling()
gains = np.array(amp.current_description.channel_gains)
offsets = np.array(amp.current_description.channel_offsets)

def samples_to_microvolts(samples):  # z jednostek wzmacniacza do mikrowoltów
    return samples * gains + offsets
    
while True:
    # 16 próbek w pakiecie, nieodebrane próbki się bufurują i można odebrać je później
    packet = amp.get_samples(16)
    print(samples_to_microvolts(packet.samples))
    print(packet.ts[0])
    print(packet.samples.shape, amp.current_description.channel_names)

Aby wykonać go w terminalu należy uruchomić polecenie, Uwaga, aby zadziałał trzeba wyłączyć SVAROGa. Proszę przetestować czy po podłączeniu wzmacniacza i uruchomieniu tego skryptu pojawiają się w terminalu wartości próbek.


/opt/braintech/bin/python3 example.py

Proszę dodać fragment analizujący sygnał on-line i wykrywający moment napięcia mięśnia. Po wykryciu w najprostszej wersji niech w terminalu pojawia się komunikat o wykryciu kliknięcia. W wersji max proszę zrobić wizualizację napięcia mięśnia albo podpiąć ten sygnał do sterowania jakimś prostym interfejsem.

Dodatek

Do działania on-line przydatne może być filtrowanie sygnału w sposób biegnący. Najlepiej zastosować do tego funkcję lfilter z ustalinymi warunkami początkowymi. Używa się tego w następujący sposób:

import scipy.signal as ss
import numpy as np
import matplotlib.pyplot as plt

Fs = 256
T = 1
t = np.arange(0,T,1/Fs)
f0 = 10
f1 = 17
f2 = 23
x = (np.sin(2*np.pi*f0*t) +
     np.sin(2*np.pi*f1*t ) +
     np.cos(2*np.pi*f2*t))
xn = x + np.random.randn(len(t)) * 0.08

b, a = ss.butter(3, 11/(Fs/2))

zi = ss.lfilter_zi(b, a)
z, _ = ss.lfilter(b, a, xn, zi=zi*xn[0])
plt.plot(y)
plt.plot(z)
plt.show()

Symulacja zastosowania tego sposobu on-line; filtrujemy za każdą iteracją pętli bufor buf, oraz przesuwamy jego zawartość, tak aby na końcu móc dadać nową próbkę. Jest to możliwa implementacja kolejki FIFO (first in first out):

zi = ss.lfilter_zi(b, a)
buf = np.zeros(30)
y = np.zeros(xn.shape)
for  ind, s  in enumerate(xn):
  buf[:-1:] = buf[1:]
  buf[-1] = s
  y_tmp, zi = ss.lfilter(b, a, buf, zi=zi)
  y[ind]=y_tmp[-1]

  
plt.plot(y)
plt.plot(z)
plt.plot(xn)
plt.show()


Dodatek 2

Dla zabawy detektor napięcia mięśni mógłby generować kliknięcia myszki, aby np. zagrać w:

https://www.gamesloon.com/free-sports-12/baseball-games-16/winnie-the-pooh-home-run-derby-54790.html


W tym celu trzeba doinstalować bibliotekę pynput:

 pip3 install --user pynput

a potem zastosować kod:

from pynput.mouse import Button, Controller
mouse = Controller()

def click():
	mouse.press(Button.left)
	time.sleep(500)
	mouse.release(Button.left)