Ćwiczenia 2 2

Z Brain-wiki

Analiza_sygnałów_-_ćwiczenia/Fourier_2


Odwracalność transformaty

Reprezentacja sygnałów w dziedzinie częstości jest dualna do reprezentacji w dziedzinie czasu. To znaczy, że jedną reprezentację można przekształcić w drugą. Do przejścia z dziedziny czasu do częstości używaliśmy transformaty Fouriera (zaimplemantowanej w fft). Przejścia z dziedziny częstości do czasu dokonujemy przy pomocy odwrotnej transformaty Fouriera (zaimplementowanej jako ifft. Mając (zespolone) współczynniki w dziedzinie częstości dla pewnego sygnału, możemy odzyskać jego przebieg czasowy.

  • Proszę wygenerować sygnał [math]s(t) = \sin(2\pi t \cdot 1)+\sin\left(2 \pi t \cdot 3+\frac{\pi}{5}\right) [/math] o długości 2,5 s próbkowany 100 Hz, obliczyć jego transformatę Fouriera za pomocą fft, a następnie zrekonstruować przebieg czasowy za pomocą ifft. Sygnał oryginalny i zrekonstruowany wykreślić na jednym rysunku. Uwaga: funkcja ifft zwraca wektor liczb zespolonych. Sprawdź jaka jest jegeo część urojona. Na wykresie rekonstrukcji przedstaw jego część rzeczywistą.


Rozdzielczość widma mocy obliczanego za pomocą FFT

Poniżej będziemy zajmować się sygnałami rzeczywistymi, więc stosujemy funkcje z rodziny Real FFT: https://docs.scipy.org/doc/numpy/reference/routines.fft.html

Badanie rozdzielczości sygnałami testowymi

Najprostsza sytuacja: Badamy współczynniki zwracane przez fft dla sinusoid o różnych częstościach.

  • Proszę kolejno wygenerować sinusoidy o długości 1s próbkowaną 32Hz i częstościach 1,10, 16 i 0 Hz. Dla tych sinusoid proszę policzyć transformaty Fouriera i wykreślić zarówno sygnały jak i wartość bezwzględne otrzymanych współczynników.
    • Jak wyglądają otrzymane wykresy?
    • Czy coś szczególnego dzieje się dla częstości 0 i 16Hz? Czy w tych skrajnych przypadkach faza sygnału ma wpływ na wynik transformaty?


  • Proszę wygenerować sygnał delta położony w sekundzie 0,5 na odcinku czasu o długości 1s próbkowany 128Hz. Dla takiego sygnału proszę policzyć transformatę Fouriera i wykreślić zarówno sygnały jak i wartość bezwzględne otrzymanych współczynników.
    • Jak wygląda transformata funkcji delta? Jakie częstości w sobie zawiera?
*

Efekt nieciągłości funkcji

  • Wygenerować sinusoidę o następujących własnościach: f=10 Hz, T=1, Fs=100 Hz, i fazie = 1;
  • Przy pomocy subplotów proszę sporządzić rysunek zgodnie z ponższym opisem:
    • subplot(2,2,1): przebieg sygnału w czasie
    • subplot(2,2,2): moduł jego transformaty Fouriera (narysować za pomocą funkcji py.stem wraz zprawidłową osią częstości,
    • subplot(2,2,3): Proszę wykreślić trzykrotnie periodycznie powielony oryginalny sygnał. Można go skonstruować wywołując funkcję: s_period = np.concatenate((s,s,s)).
    • subplot(2,2,4): moduł transformaty Fouriera s_period (narysować za pomocą funkcji py.stem wraz zprawidłową osią częstości
  • Powtórz te same kroki dla sinusa o częstości 10.3 Hz.

Pytania:

  1. Czym różnią się przedłużenia sinusoidy 10 Hz od sinusoidy 10.3 Hz? Proszę zwrócić uwagę na miejsca sklejania sygnałów.
  2. Skąd bierze się widoczna różnica w widmie sinusoidy 10 Hz i 10.3 Hz?
*

Długość sygnału a rozdzielczość widma FFT

Z dotychczasowych rozważań o transformacie Fouriera ograniczonych w czasie sygnałów dyskretnych wynika, że w widmie reprezentowane są częstości od [math]-F_N[/math] do [math]F_N[/math] gdzie [math]F_N[/math] to częstości Nyquista. Dostępnych binów częstości jest N - tyle samo ile obserwowanych punktów sygnału. Zatem zwiększenie długości sygnału w czasie poprawia "rozdzielczość" reprezentacji częstotliwościowej sygnału.

Załóżmy, że dysponujemy jedynie sekwencją N próbek pewnego sygnału. Rozważymy teraz jakie można przyjąć strategie przedłużania tego sygnału w celu zwiększenia gęstości binów częstotliwościowych i jakie te strategie mają konsekwencje.

Przedłużanie sygnału zerami

Inną popularną metodą na zwiększanie ilości binów w transformacie Fouriera jest przedłużanie sygnału zerami (zero-padding). Jest to szczególny przypadek następującego podejścia: Nasz "prawdziwy" sygnał jest długi. Oglądamy go przez prostokątne okno, które ma wartość 1 na odcinku czasu dla którego próbki mamy dostępne i 0 dla pozostałego czasu (więcej o różnych oknach będzie na kolejnych zajęciach). W efekcie możemy myśleć, że oglądany przez nas sygnał to efekt przemnożenia "prawdziwego" sygnału przez okno. Efekty takiego przedłużania proszę zbadać przy użyciu poniższego kodu.

# -*- coding: utf-8 -*-

import pylab as py
import numpy as np
import numpy.fft as FFT

def sin(f = 1, T = 1, Fs = 128, phi =0 ):
	'''sin o zadanej częstości (w Hz), długości, fazie i częstości próbkowania
	Domyślnie wytwarzany jest sygnał reprezentujący 
	1 sekundę sinusa o częstości 1Hz i zerowej fazie próbkowanego 128 Hz
	'''
 
	dt = 1.0/Fs
	t = np.arange(0,T,dt)
	s = np.sin(2*np.pi*f*t + phi)
	return (s,t)	
	
(s1,t) = sin(f = 15.0, T =0.1, Fs = 100, phi = 0)
(s2,t)= sin(f = 20.0, T =0.1, Fs = 100, phi = 0)
s=s1+s2
py.clf()
py.subplot(2,2,1)
py.plot(t,s)
py.subplot(2,2,2)
S = FFT.fft(s)
F = FFT.fftfreq(len(s),0.01)
py.stem(F,np.abs(S)/len(S))
py.xlim((-50,50))
py.ylim((0,0.7))
z= np.zeros(len(s))
py.subplot(2,2,3)
s_period = np.concatenate((s,z,z,z,z,z,z,z,z,z))
t_period = np.arange(0,len(s_period)/100.0,0.01)
py.plot(t_period,s_period)

py.subplot(2,2,4)
S_period = FFT.fft(s_period)
F_period = FFT.fftfreq(len(s_period),0.01)
py.stem(F_period,np.abs(S_period)/len(S))
py.stem(F,np.abs(S)/len(S),linefmt='r-', markerfmt='ro')
py.xlim((-50,50))
py.ylim((0,0.7))
py.show()

Analiza_sygnałów_-_ćwiczenia/Fourier_2