TI/Programowanie dla Fizyków Medycznych:Ciekawe zadania
Spis treści
Ciekawe zadania
powrót: Programowanie dla fizyków medycznych
Zadanie 1
Masz dwa ciągi w formie list. Podciągiem nazwiemy dowolny podzbiór elementów wyjętych z ciągu, ułożonych w tej samej co wcześniej kolejności. Np.
- [1, 3, 5] jest podciągiem ciągu [0,1,2,3,4,5]
- [1, 2, 1] jest podciągiem ciągu [0,1,2,3,2,1,0].
Zadnie polega na znalezieniu najdłuższego wspólnego podciągu danych ciągów.
Powinna zostać zdefiniowana funkcja, która na wejściu dostaje po przecinkach jako parametry podane ciągi, a zwraca wartość int, odpowiadającą długości najdłuższego podciągu.
Zadanie 2A
Masz współrzędne trzech punktów A, B, C wyznaczających wierzchołki trójkąta oraz współrzędne punktu P. Zadanie polega na sprawdzeniu, czy punkt P znajduje się wewnątrz trójkąta (lub na jego krawędzi).
Powinna zostać zdefiniowana funkcja, która na wejściu dostaje cztery krotki (xA, yA), (xB, yB), (xC, yC), (xP, yP) i zwraca True, jeśli punkt P spełnia powyższy warunek.
Aby sprawdzić, czy zadanie dobrze zostało rozwiązane, zwizualizujmy je z pomocą biblioteki matplotlib.pyplot:
import matplotlib.pyplot as plt
Wierzcholki=[(1,2),(2,3),(4,2)] #lista wierzchołków trójkąta
P=(7,8) #współrzędne punktu do sprawdzenia
#rysowanie wierzchołków
#lista krotek zostaje zamieniona na dwie listy współrzędnych x i y: [1,2,4] i [2,3,2]
plt.plot([I[0] for I in Wierzcholki], [I[1] for I in Wierzcholki], "*k")
#rysowanie krawędzi
#do list współrzędnych dodano pierwszy punkt, żeby trójkąt się zamknął
plt.plot([I[0] for I in Wierzcholki]+[Wierzcholki[0][0]], [I[1] for I in Wierzcholki]+[Wierzcholki[0][1]], "-k")
plt.plot(P[0], P[1], "*r")
#ustawianie granic widocznej części obrazu
plt.xlim(0,10)
plt.ylim(0,10)
Podpowiedź: Jeśli punkt P znajduje się wewnątrz trójkąta ABC, wówczas jeśli spróbujemy wyrazić wektor PC przez kombinację wektorów PA i PB: [math]\overrightarrow {PC}=a \overrightarrow {PA}+b \overrightarrow {PB}[/math], oba współczynniki a i b będą miały wartości ujemne.
Zadanie 2B
Masz zbiór punktów, z których część wyznacza krawędzie wypukłego wielokąta, a pozostałe znajdują się wewnątrz wielokąta. Sprawdź które to punkty.
Powinna zostać zdefiniowana funkcja, która na wejściu otrzyma listę krotek wyznaczających punkty [(xA, yA), ...], a na wyjściu zwraca listę krotek wyznaczających tylko punkty wyznaczające krawędzie zewnętrznego wypukłego wielokąta.
Działanie programu powinno zostać zwizualizowane - najpierw stan wejściowy, potem stan wyjściowy.
Zadanie 2C
Zbiór punktów stanowiących wierzchołki wielokąta otrzymany w zadaniu 2B przerobić na zbiór trójkątów w taki sposób, by ich krawędzie się nie przecinały.
Powinna zostać zdefiniowana funkcja, która na wejściu ma listę współrzędnych wierzchołków [(xA, yA), ...], a na wyjściu listę trójek współrzędnych [((xA, yA), (xB, yB), (xC, yC)), ...]
Podpowiedź: Wielokąt wypukły może być zbudowany z wielu trójkątów mających jeden wierzchołek wspólny.
Zadanie 3
Masz układ n równań liniowych. Rozwiąż go, eliminując kolejne zmienne przez mnożenie stronami i odejmowanie stronami równań.
[math] \\ ax+by=c \ |\cdot d \\ dx+ey=f \ |\cdot a \\ \\ adx+bdy=cd \\ adx+eay=fa \\ - \\ (bd-ea)y=cd-fa \\ y=\frac {cd-fa}{bd-ea} [/math]
Na wejściu funkcji rozwiązującej układ równań powinna znaleźć się lista list reprezentujących współczynniki w kolejnych równaniach, np. [[1,2,3],[2,3,4]].
Przydatna będzie druga funkcja, która będzie dostawała na wejściu współczynniki układu n równań, a na wyjściu będzie zwracała współczynniki układu n-1 równań, nie zawierające pierwszej zmiennej.