Elektroencefalografia/Elektroencefalogram czyli EEG
Wśród metod badawczych neurofizjologii, elektroencefalogram (EEG) wyróżnia się najdłuższą historią zastosowań klinicznych, najniższym kosztem, całkowitą nieinwazyjnością i najwyższą rozdzielczością czasową. Dwie ostatnie cechy wykazuje również magnetoencefalografia (magnetoencephalography MEG), oparta na zapisie pól magnetycznych generowanych przez płynące w mózgu prądy. Jednak ich zapis wymaga stosowania drogiej i nieprzenośnej aparatury (zob. rozdział Fizyczne i techniczne aspekty rejestracji sygnałów bioelektrycznych), więc na razie skoncentrujemy się na EEG. Aby zrozumieć stan aktualny zaczniemy od historii.
Pionierzy badań nad bioelektrycznością
Początki badania bioelektryczności sięgają okresu jedności nauk przyrodniczych. W roku 1786 Luigi Galvani (rys. 1) wykonał słynne doświadczenie: wykazał, że jednoczesne dotknięcie mięśnia wypreparowanej kończyny żaby dwoma (połączonymi ze sobą) różnymi metalami wywołuje skurcz. Mimo błędnej interpretacji, doświadczenie to wpłynęło stymulująco na badania elektryczności — prawidłową interpretację podał Alessandro Volta w roku 1796. Minęło 50 lat, nim do istoty „elektryczności zwierzęcej” zbliżył się Du Bois-Reymond, wykazując w roku 1848, że aktywności w nerwie obwodowym towarzyszy niezmiennie zmiana potencjału na jego powierzchni.
Pierwszy opis czynności elektrycznej mózgu pojawił się w roku 1875 w sprawozdaniu z grantu przyznanego przez British Medical Association (Brazier 1961). Richard Caton (rys. 2) wykazał korelację między prostymi czynnościami (ruch głową, przeżuwanie) a zmianą potencjału w odpowiednich obszarach kory mózgowej kotów i królików. Zawarte w raporcie zdanie feeble currents of varying directions pass through the multiplier when the electrodes are placed on two points of external surface... stanowiło ponadto pierwszy opis elektroencefalogramu. Jednak publikacje Catona w czasopiśmie czysto medycznym przeszły nie zauważone.
W roku 1886 23-letni Adolf Beck (rys. 3) rozpoczął pracę na wydziale fizjologii Uniwersytetu Jagiellońskiego w Krakowie pod kierunkiem profesora Cybulskiego (rys. 4). W roku 1890 obronił rozprawę doktorską Oznaczenie lokalizacyi w mózgu i rdzeniu za pomocą zjawisk elektrycznych (Beck 1891). Podobnie jak inni, zajmujący się podówczas podobną tematyką, nie wiedział o wcześniejszych pracach Catona. Jednak rozprawa jego stanowiła znacznie głębsze studium problemu lokalizacji funkcji sensorycznych w mózgu jak i samego elektroencefalogramu (odkrył m. in. jego desynchronizację w odpowiedzi na bodźce). Wyniki te opublikował w najszerzej podówczas czytanym piśmie fizjologicznym — Centerblatt für Physiologie (Beck 1890). Jego krótki artykuł rozpętał burzę pretensji do palmy pierwszeństwa — m. in. Ernest Fleischl von Marxow dowodził, że obserwacje czynności elektrycznej mózgu spisał wcześniej w liście złożonym w... sejfie Cesarskiej Akademii Nauk w Wiedniu (był to pono zwyczaj podówczas nierzadki na niektórych uniwersytetach Europy). Beck odpowiedział skromnie, że technikę badania potencjałów nerwów i konstrukcję elektrod opracował Du Bois-Reymond, więc zastosowanie znanej techniki do rozwiązania nowego problemu nie zasługuje na miano odkrycia. Stwierdził ponadto, że motywem podjęcia tych eksperymentów był konkurs ogłoszony w październiku 1888 przez prof. Cybulskiego, który jest w związku z tym autorem idei. Dyskusję uciął Caton, cytując wspomniane powyżej sprawozdanie.
Głównym celem opisywanych wyżej badań było wykorzystanie elektrofizjologii do lokalizacji funkcji w mózgu. Wróćmy jednak do „ubocznego” ich efektu, czyli elektroencefalogramu, dla którego Beck zaproponował nazwę aktywny prąd niezależny, w odróżnieniu od prądów wywołanych stymulacją. Ogromne postępy w zakresie jego badania i interpretacji poczynił wspomniany już profesor Napoleon Nikodem Cybulski, choć wieloletni brak funduszy na sprzęt fotograficzny odebrał mu szansę na pierwszeństwo w opublikowaniu zdjęcia zapisu czynności elektrycznej mózgu.
Jak widać z tej historii, również w dziedzinie badań czynności elektrycznej mózgu stoimy na ramionach gigantów. Można też z niej wyciągnąć inne wnioski, niezmienne od lat: choć wiemy, że wyniki należy publikować w dobrych czasopismach o zasięgu międzynarodowym, to poziom finansowania nauki w Polsce czasem stawia nas na przegranej pozycji.
Aktywny Prąd Niezależny
Potencjały mózgowe mierzone z powierzchni skóry czaszki są zaledwie rzędu mikrowoltów, dlatego opisane w poprzednim podrozdziale eksperymenty prowadzono na odsłoniętych mózgach zwierząt, gdzie sygnał — mierzony w bezpośredniej bliskości źródeł, nie oddzielonych od elektrod płynem owodniowym, czaszką i skórą — był wystarczająco silny dla ówczesnych galwanometrów. Pierwszy zapis elektroencefalogramu człowieka (z powierzchni czaszki swego syna) uzyskał w roku 1925 Hans Berger, jednak wyniki trzymał w tajemnicy aż do skompletowania bogatego materiału, który opublikował w 1929 w artykule Über das Elektroenkephalogramm des Menschen (Berger 1929). Artykuł ten stanowi dziś klasykę elektroencefalografii klinicznej, rozpoczął również serię corocznych (do 1938) publikacji Bergera o niemal jednobrzmiących tytułach. Berger potwierdził występowanie w mózgu człowieka większości efektów opisywanych u zwierząt, odrzucił jednak zaproponowaną przez Włodzimierza Włodzimierzowicza Prawdzicz-Niemińskiego (który pierwszy opublikował w 1912 zdjęcie elektroencefalogramu) nazwę elektrocerebrogram jako barbarzyński zlepek greki i łaciny.
W dniu dzisiejszym technologia zapisu EEG wykorzystuje doskonałe, specjalizowane elektroniczne mikrowoltomierze różnicowe, czyli elektroencefalografy. Zapewnia też wystarczające próbkowanie w czasie i przestrzeni: nawet tysiące Hz i 130 obserwowanych jednocześnie odprowadzeń (elektrod). Wiele do zrobienia pozostaje natomiast w dziedzinie analizy i interpretacji otrzymanych w ten sposób danych; na przykład w klinicznych zastosowaniach EEG postęp ostatnich dziesięcioleci EEG podsumować można wręcz jako przejście od analizy wzrokowej zapisów EEG na papierze do analizy wzrokowej EEG wyświetlanego na ekranie komputera — pomimo ogromnego rozwoju matematyki i informatyki podstawową metodą jest tu wciąż analiza wzrokowa (Nuwer 1997).
Jednym z usprawnień wprowadzonych przez cyfrową rejestrację EEG jest łatwa możliwość zmiany referencji (tzw. montażu) wyświetlanego sygnału. Dane rejestrowane są zwykle w postaci różnicy potencjałów między daną elektrodą a elektrodą odniesienia, jednak często wygodniej jest wyświetlać różnice potencjałów między wybranymi elektrodami (rys. 6).
EEG i MEG, czyli elektro- a magnetoencefalografia
Magnetoencefalografia jest techniką pozwalającą na pomiary pól magnetycznych indukowanych przez zmienne prądy płynące w mózgu. Pola magnetyczne generowane przez neurony są niezwykle małe rzędu 100-103 fT — rzędy wielkości mniejsze niż szum magnetyczny pochodzący ze środowiska (rzędu [math]10^8[/math] fT). Do ich pomiaru wykorzystuje się niezwykle czułe sensory — nadprzewodzące interferometry kwantowe (ang. superconducting quantum interference devices (SQUIDs)). Zasadę działania aparatury MEG i jej zastosowania są opisane w rozdziale Magnetoencefalografia.
MEG i EEG mierzą ślady tych samych procesów elektrycznych zachodzących w mózgu. Jednak propagacja pola magnetycznego jest znacznie mniej zakłócana przez zmienne własności ośrodków pomiędzy źródłami (przybliżanymi zwykle modelem dipola prądowego) a czujnikami. Można powiedzieć, że granice tkanek, czaszki, skóry i powietrza, wpływające bardzo mocno na pole elektryczne, są dla pola magnetycznego przezroczyste. O ile w EEG widać aktywność wszystkich odpowiednio silnych źródeł, to MEG wykazuje tylko wkłady od źródeł dipolowych zorientowanych prostopadle do promienia kuli przybliżającej głowę.
Z dokładnością do powyższych różnic, struktury widoczne w sygnałach EEG i MEG są zwykle dość podobne. Dlatego również metody analizy obu tych sygnałów są praktycznie jednakowe, za wyjątkiem metod lokalizacji przestrzennej źródeł, opisanych w części Problem odwrotny w elektro- i magnetoencefalografii, w rozdziale Metody analizy sygnałów EEG - przykłady[1].
Literatura
Beck, A. Die Stroeme der Nervencentren. Centerblatt fuer Physiologie, 4: 572-573, 1890.
Beck, A. Oznaczenie lokalizacyi w mózgu i rdzeniu za pomoca zjawisk elektrycznych. W Rozpr. Wydz. mat.-przyr., numer I w Seria II: 186-232. Polska Akad. Um., 1891. Przedstawiono 20 października 1890.
Berger, H. Uber das Elektrenkephalogramm des Menschen. Arch. f. Psychiat., 87: 527-570, 1929.
Brazier, M. A. B. A History of the Electrical Activity of the Brain, The First Half-Century. Pitman Medical Publishing, 39 Parker Street, London W.C. 2, 1961.