Elektroencefalografia/Metody analizy sygnałów EEG - analiza w dziedzinie czasu

Z Brain-wiki
Wersja z dnia 16:32, 23 maj 2015 autorstwa Jarekz (dyskusja | edycje) (Utworzono nową stronę " ==Tradycja analizy wzrokowej EEG== W ciągu dziesięcioleci klinicznych zastosowań EEG sklasyfikowano szereg charakterystycznych rytmów i tzw. grafoelementów, czyli...")
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)

Tradycja analizy wzrokowej EEG

W ciągu dziesięcioleci klinicznych zastosowań EEG sklasyfikowano szereg charakterystycznych rytmów i tzw. grafoelementów, czyli krótkich fragmentów sygnału wykazujących określone cechy i pojawiających się w określonych stanach mózgu. O ile niektóre z nich widać już gołym okiem, to jednak ze względu na ogromną zmienność osobniczą i międzyzapisową tylko po części możliwe było sklasyfikowanie ich cech w postaci definicji.

Fale alfa

Fale alfa (rys. 1) są rytmiczną aktywnością kory mózgowej w paśmie 8-12 Hz. Występowanie rytmu alfa przypisuje się stanowi relaksu z zamkniętymi oczami. Fale alfa najlepiej widoczne są w odprowadzeniach tylnych, czyli z okolic części kory odpowiadającej za przetwarzanie informacji wzrokowych. Ta jedna z najwcześniej zaobserwowanych struktur EEG — mimo, że nie występuje podczas właściwego snu — ma fundamentalne znaczenie dla analizy EEG, ponieważ świadczy o „przedsennym” czuwaniu pacjenta, a jej zanik oznacza przejście ze stanu czuwania do płytkiego snu. Fale alfa zanikają także podczas wysiłku umysłowego, np. wykonywaniu działań matematycznych albo przy otwarciu oczu i zadziałaniu na nie światła. Blokowanie rytmu alfa jest wyrazem desynchronizacji aktywności neuronów, zachodzącej pod wpływem koncentracji umysłowej lub stymulacji narządów zmysłów. Rytm o częstości w paśmie alfa rejestrowany w okolicach kory motorycznej nazywany jest też rytmem mu (μ). Wykazuje on istotny zanik w momencie wykonywania ruchu przez człowieka lub tylko zamierzenia jego wykonania.

Fale delta

Fale delta (rys. 2) są wysokoamplitudową aktywnością o niskiej częstości (0-4 Hz) i czasie trwania co najmniej 1/4 s. Do celów praktycznych przyjęto, że dolną granicą częstości jest 0,5 Hz. Pojawiające się podczas głębokiego snu fale delta o amplitudzie przekraczającej 75 μV nazywa się falami wolnymi (ang. Slow Wave Activity, SWA). Występowanie SWA spowodowane jest wysoką synchronizacją neuronów kory (większą synchronizację spotyka się tylko podczas ataku epilepsji). Fale delta rejestruje się także podczas głębokiej medytacji, u małych dzieci i w przypadku pewnego rodzaju uszkodzeń mózgu.

Fale theta

Aktywnością theta (rys. 3) nazywamy aktywność w paśmie od 3 do 7 Hz i rozpiętości (ang. peak-to-peak) rzędu kilkudziesięciu μV. Charakterystyczne fale theta występują np. w okresie snu płytkiego – przypuszcza się że w tym czasie następuje przyswajanie i utrwalanie uczonych treści. Fale theta są najczęściej występującymi falami mózgowymi podczas medytacji, transu, hipnozy, intensywnego marzenia, intensywnych emocji. Odmienny rodzaj fal theta jest związany z aktywnością poznawczą, kojarzeniem ─ w szczególności uwagą, a także procesami pamięciowymi (tzw. rytm FMθ - frontal midline theta). Jest on obserwowany głównie w przyśrodkowej części przedniej części mózgu.

Fale beta

Fale beta lub rytm beta (rys. 4) - niskoamplitudowe oscylacje o częstości w przedziale 12-30 Hz. W paśmie beta wyróżnia się następujące przedziały: wolne fale beta (12-15 Hz), właściwe-średnie pasmo beta (15-18 Hz) i szybkie fale beta, o częstości powyżej 19 Hz. Ta mało zsynchronizowana praca neuronów charakteryzuje zwykłą codzienną aktywność kory mózgowej u człowieka, percepcję zmysłową i pracę umysłową. Specyficzna aktywność beta towarzyszy również stanom po zażyciu niektórych leków. Fale beta zazwyczaj występują w okolicy czołowej. Obrazują one zaangażowanie kory mózgowej w aktywność poznawczą. Fale beta o małej amplitudzie występują podczas koncentracji uwagi, gdy mózg nastawiony jest na świadomy odbiór bodźców zewnętrznych za pomocą wszystkich zmysłów.

Fale gamma

Fale gamma (rys. 5) fale mózgowe o częstości w okolicach 40 Hz (30 - 80 Hz). Aktywność w paśmie 80 - 200 Hz określa się natomiast jako wysokoczęstotliwościowa (high) gamma. Rytm gamma towarzyszy aktywności ruchowej i funkcjom motorycznym. Fale gamma związane są też z wyższymi procesami poznawczymi, m.in. percepcją sensoryczną, pamięcią. Przypuszcza się, że rytm gamma o częstotliwości około 40 Hz ma związek z świadomością percepcyjną (dotyczącą wrażeń zmysłowych i ich postrzegania) oraz związany jest z integracją poszczególnych modalności zmysłowych w jeden spostrzegany obiekt. Aktywność high-gamma występuje podczas aktywacji kory mózgowej, zarówno przez bodźce zewnętrzne (np. dotykowe, wzrokowe), jak i wewnętrzne (przygotowanie ruchu, mowa).

Fale o częstościach 100-250 Hz nazywane są ripples. Rejestruje się je w sygnale z implantowanych mikroelektrod, a wysokoczęstościową aktywność fast ripples (250-600 Hz) w szczególności u pacjentów z epilepsją, w obszarze ogniska epileptycznego.

Kompleks K i wrzeciono snu

Wrzeciona snu (ang. sleep spindles) (rys. 6) to charakterystyczne struktury zaobserwowane już niemal od samych początków historii pomiarów EEG. Występują podczas umiarkowanie głębokiego snu. Wrzecionami snu nazywamy aktywność o częstości 12 - 14 Hz i czasie trwania 0,5 - 1,5 s. Obwiednia tych krótkich salw dość szybkiej aktywności o niewielkiej amplitudzie przypomina kształt wrzeciona. Wrzeciona pojawiają się we wszystkich odprowadzeniach, z tym, że ich amplituda i częstość może się nieznacznie zmieniać przy przejściu od przodu do tyłu głowy (od wrzecion „wolnych” po „szybkie”). Wrzeciona snu mogą, występować w parach z kompleksami K.

Kompleksy K (ang. K-complexes, w Polsce często nazywane zespołami K), (rys. 6) mogą pojawiać się pojedynczo lub też w serii po dwa podczas umiarkowanie głębokiego snu. Definiuje się je jako dwufazową (ostry spadek poprzedzony dodatnim maksimum), wysokonapięciową (to największy pik strefy), niskoczęstotliwościową falę związaną z wrzecionami snu, przy czym jej czas trwania powinien przekraczać 0,5 s. Obecnie wymaga się aby struktury te miały częstość 1 - 4 cykli/s, amplitudę co najmniej dwa razy większą od średniej amplitudy tła i czas trwania 0,5 - 2 s. Amplituda kompleksu K jest zazwyczaj największa na czubku głowy. Kompleksy K mogą podczas snu występować spontanicznie lub też w odpowiedzi na bodźce.

Fale piłokształtne (ang. sawtooth waves) pojawiają się w EEG w czasie snu paradoksalnego (REM), są to wierzchołkowe, ujemne fale o umiarkowanej częstości i amplitudzie. Z definicji falą piłokształtną nazywa się pojedyncze lub zgrupowane po kilka fale o częstości 6 - 10 Hz, amplitudzie rzędu kilkudziesięciu μV i wyraźnym kształcie zębów piły.

Wierzchołkowe fale ostre (ang. Vertex sharp waves) występują pod koniec okresu płytkiego snu. Aktywnością tą określa się ostry potencjał maksymalny w okolicy wierzchołkowej, ujemny w stosunku do innych pól, o amplitudzie zmiennej, często dochodzącej do 250 μV peak-to-peak.

Iglice (ang. spikes), nazwa ograniczona do padaczkopodobnych wyładowań, obserwowanych także w zapisie międzynapadowym EEG. Są to grafoelementy wyraźnie wyróżniające się z czynności podstawowej, z ostrym wierzchołkiem i często następującą po nim falą wolną. Czas trwania iglicy wynosi zazwyczaj od 20 do 70 milisekund, a amplituda co najmniej dwa razy większa o od amplitudy tła w obrębie około 5 sekund.

Ponadto, w zapisie EEG pojawiają się w postaci artefaktów ślady wolnych ruchów gałek ocznych (ang. Slow Eye Movement, SEM), obserwowane w odprowadzeniach EOG (elektrookulogram) zwłaszcza w stanie płytkiego snu oraz szybkie ruchy gałek ocznych (ang. Rapid Eye Movement, REM), występujące podczas snu paradoksalnego.

80 lat postępu w klinicznej analizie EEG: od wzrokowej analizy zapisów na papierze do wzrokowej analizy zapisów na ekranie komputera. Źródło Biomedical Engineering Online

Znajomość struktur widocznych w sygnale EEG i ich korelat behawioralnych i klinicznych jest wynikiem dziesięcioleci wzrokowej analizy przebiegów EEG — kiedyś zapisywanych na papierze, dzisiaj wyświetlanych na ekranie monitora. Niestety analiza wzrokowa, poza wysokim kosztem, cechuje się ograniczoną powtarzalnością. Pomimo dążenia do standaryzacji opisu i nazewnictwa struktur (por. np. Rechtschaffen i Kales, 1968) różni eksperci, a czasem nawet ten sam ekspert po jakimś czasie, opiszą zawartość tego samego fragmentu EEG w sposób zwykle podobny, ale nie jednakowy. Powoduje to ogromne trudności w implementacji metod matematycznej analizy szeregów czasowych pod kątem zgodności z tradycją analizy wzrokowej w sytuacji, gdy samo kryterium nie jest do końca jednoznaczne. Pomimo tego, wspomniana wiedza o klinicznych i behawioralnych korelatach obecnych w EEG struktur jest niezastąpiona w sytuacji klasycznej dla nauk biomedycznych, a szczególnie wyraźnej w neuronaukach: badane efekty są często o rzędy wielkości mniejsze niż różnice międzyosobnicze. W tej sytuacji tylko powtarzanie tych samych badań w różnych ośrodkach na całym świecie na różnych populacjach osób może prowadzić do stabilnych wniosków. Jak dotychczas jedyną metodą stosowaną na tak wielką skalę jest analiza wzrokowa.

Potencjały wywołane

Szablon:EEG:Potencjały wywołane

Literatura

Dawson G. D. Cerebral responses to electrical stimulation of peripheral nerve in man. J Neurol Neurosurg Psychiatry, 10:134-140, 1947.

Rechtschaffen A. i Kales A. (Edytorzy) A manual of standardized terminology, techniques and scoring system for sleep stages in human subjects. Number 204 in National Institutes of Health Publications. US Government Printing Office, Washington DC, 1968.

Szelenberger W. Potencjały wywołane. Wydawnictwo Elmiko, Warszawa, 2000.

Yeung N., Bogacz R., Holroyd C. B. i Cohen J. D. Detection of synchronized oscillations in the electroencephalogram: An evaluation of methods. Psychophysiology, 41:822 - 832, 2004.