WnioskowanieStatystyczne/Bonferroni: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 67: Linia 67:
 
Musimy dowieść, że prawdopodobieństwo popełnienia błędu I rodzaju w tej procedurze jest nie większe niż <math>\alpha</math>.  
 
Musimy dowieść, że prawdopodobieństwo popełnienia błędu I rodzaju w tej procedurze jest nie większe niż <math>\alpha</math>.  
  
Zaczynamy od ''H<sub>1</sub>'': niech pierwszą prawdziwą odrzuconą hipotezą (pierwszy błąd I rodzaju, false positive) będzie ''H<sub>k</sub>''. To znaczy, że ''H<sub>k-1</sub>'' była ostatnią z ''m<sub>0</sub>'' hipotez fałszywych, i  
+
Zaczynamy od ''H<sub>1</sub>'': niech pierwszą prawdziwą odrzuconą hipotezą (pierwszy błąd I rodzaju, false positive) będzie ''H<sub>k</sub>''. To znaczy, że ''H<sub>k-1</sub>'' była ostatnią hipotezą fałszywą, i  
  
 
<math>k - 1 + m_0 \leq m \implies m_0 \leq m - k + 1</math>.
 
<math>k - 1 + m_0 \leq m \implies m_0 \leq m - k + 1</math>.
  
Skoro wśród ''H<sub>i</sub>'' było ''m<sub>0</sub>'' hipotez prawdziwych,  
+
Skoro wśród ''H<sub>k</sub>'' została odrzucona, to z definicji procedury
  
<math> p_k \leq \frac{\alpha}{m_0} \leq \frac{\alpha}{m - k +1}</math>
+
<math> p_k \leq \frac{\alpha}{m - k +1} \leq \frac{\alpha}{m_0}</math>
  
bo skoro <math>m_0 \leq m - k + 1</math>, to również <math>\frac{\alpha}{m_0} \leq \frac{\alpha}{m - k +1}</math>
+
bo skoro <math>m_0 \leq m - k + 1</math>, to <math>\frac{\alpha}{m - k +1} \leq \frac{\alpha}{m_0}</math>.
  
 
==Evaluation of measurement data — Guide to the expression of uncertainty in measurement==
 
==Evaluation of measurement data — Guide to the expression of uncertainty in measurement==

Wersja z 20:43, 4 maj 2017

Błędy I i II rodzaju

Przyjęcie poziomu istotności ([math]\alpha[/math]) na poziomie 5 procent oznacza, że średnio w jednym na dwadzieścia przypadków możemy odrzucić prawdziwą hipotezę, czyli popełnić błąd I rodzaju (false positive).

Dla kompletności przypomnijmy, że błąd II rodzaju polega na przyjęciu hipotezy fałszywej (false negative) i jest związany z poziomem istotności testu.

Pojęcia błędów I i II rodzaju, podobnie jak hipotezy zerowej (H0) wprowadzili do statystyki Jerzy Spława-Neyman i Egon Pearson w latach 30. XX wieku.


hipoteza H0
Prawdziwa Fałszywa
decyzja Odrzuć błąd typu  I (False Positive) poprawna (True Positive)
Przyjmij poprawna (True Negative) błąd typu II (False Negative)


Linią przerywaną jest oznaczony rozkład jednej z możliwych hipotez alternatywnych. Na górnym wykresie zacieniowany obszar (o polu [math]\beta[/math]) odpowiada prawdopodobieństwu błędnej akceptacji hipotezy alternatywnej (błąd II rodzaju, false nagative). Na dolnym zacieniowany obszar odpowiada prawdopodobieństwu odrzucenia hipotezy alternatywnej, czyli mocy testu ([math]1-\beta[/math]) względem tej konkretnej hipotezy alternatywnej.

Wielokrotne porównania

Problem wielokrotnych porównań (ang. multiple comparisons) pojawia się w eksploracyjnej (w odróżnieniu od konfirmacyjnej) analizie danych, por. np. http://en.wikipedia.org/wiki/Data_dredging zwane też p-hacking.

Przykład

[math]N[/math] obserwacji podzielonych na 7 grup. Testujemy hipotezę o różnicy między średnimi dowolnych 2 grup, wykonując wykonać [math]\binom{7}{2}=21[/math] testów różnic między grupami. Jeśli przyjmiemy poziom istotności [math]\alpha=0.05[/math], mamy dużą szansę na dokonanie fałszywego odkrycia. Jak dużą?

FWER: family-wise error rate

Poziom istotności zdefiniowany dla pojedynczych testów zastępujemy pojęciem FWER, czyli prawdopodobieństwem popełnienia przynajmniej jednego błędu I rodzaju w grupie (rodzinie) testów.

Poprawka Bonferroniego

gwarantuje, że jeśli każdy z m testów wykonamy na poziomie istotności [math]\frac{\alpha}{m}[/math], to [math]\mathrm{FWER}=\alpha[/math].

Rozważmy rodzinę m hipotez Hi (w powyższym przykładzie m = 21), przypisując każdej Hi p-wartość (ang. p-value) pi. FWER, czyli prawdopodobieństwo popełnienia przynajmniej jednego błędu I rodzaju którymś z m testów hipotez Hi, będzie nie większy niż suma prawdopodobieństw popełnienia błędu I rodzaju [math] P\left(p_i\leq\frac \alpha m\right)[/math] w każdym testów z osobna. I to niezależnie od tego, czy testy są niezależne czy nie. Czyli

[math] \text{FWER} \leq\sum_{i=1}^{m}\left\{P\left(p_i\leq\frac \alpha m\right)\right\} \leq m \frac{\alpha}{m} = \alpha.[/math]

Nierówność jest słuszna również w przypadku, kiedy tylko część z m hipotez jest prawdziwa --- FWER jest wtedy jeszcze mniejszy. Jak widać jest to poprawka bardzo konserwatywna, wymuszająca przeprowadzanie testów na potencjalnie zaniżonych poziomach istotności [math]\frac{\alpha}{m}[/math].

Poprawka Bonferroniego-Holma

P-wartości pi odpowiadające hipotezom Hi sortujemy w kolejności od najmniejszej do największej

p(1) < p(2) < ... < p(m)

Dla [math]\textrm{FWER}=\alpha[/math] znajdujemy najmniejsze k, dla którego

[math]p_k \gt \frac{\alpha}{m+1-k}[/math]

i odrzucamy hipotezy H1 ... Hk-1, przyjmując Hk ... Hm.

dowód

Załóżmy, że wśród m testowanych Hi jest m0 hipotez prawdziwych.

Musimy dowieść, że prawdopodobieństwo popełnienia błędu I rodzaju w tej procedurze jest nie większe niż [math]\alpha[/math].

Zaczynamy od H1: niech pierwszą prawdziwą odrzuconą hipotezą (pierwszy błąd I rodzaju, false positive) będzie Hk. To znaczy, że Hk-1 była ostatnią hipotezą fałszywą, i

[math]k - 1 + m_0 \leq m \implies m_0 \leq m - k + 1[/math].

Skoro wśród Hk została odrzucona, to z definicji procedury

[math] p_k \leq \frac{\alpha}{m - k +1} \leq \frac{\alpha}{m_0}[/math]

bo skoro [math]m_0 \leq m - k + 1[/math], to [math]\frac{\alpha}{m - k +1} \leq \frac{\alpha}{m_0}[/math].

Evaluation of measurement data — Guide to the expression of uncertainty in measurement

JCGM 100:2008 GUM 1995 with minor corrections http://www.iso.org/sites/JCGM/GUM-JCGM100.htm


3.4.8 Although this Guide provides a framework for assessing uncertainty, it cannot substitute for critical thinking, intellectual honesty and professional skill. The evaluation of uncertainty is neither a routine task nor a purely mathematical one; it depends on detailed knowledge of the nature of the measurand and of the measurement. The quality and utility of the uncertainty quoted for the result of a measurement therefore ultimately depend on the understanding, critical analysis, and integrity of those who contribute to the assignment of its value.