Analiza sygnałów - wykład: Różnice pomiędzy wersjami

Z Brain-wiki
(Nie pokazano 13 pośrednich wersji utworzonych przez tego samego użytkownika)
Linia 12: Linia 12:
 
#[[Systemy liniowe niezmiennicze w czasie (LTI)|Systemy liniowe niezmiennicze w czasie]]
 
#[[Systemy liniowe niezmiennicze w czasie (LTI)|Systemy liniowe niezmiennicze w czasie]]
 
#[[Model autoregresyjny (AR)|Model autoregresyjny]]
 
#[[Model autoregresyjny (AR)|Model autoregresyjny]]
#[[Funkcja_systemu|Funkcja systemu]]
+
#[[Funkcja_systemu|Transformata Z i widmo procesu AR]]
 +
#[[Filtry|Funkcja przejścia i filtry LTI]]
 
<!-- #[[Twierdzenie o próbkowaniu|Twierdzenie o próbkowaniu]]
 
<!-- #[[Twierdzenie o próbkowaniu|Twierdzenie o próbkowaniu]]
 
##[[Procesy_stochastyczne|Procesy stochastyczne]] -->
 
##[[Procesy_stochastyczne|Procesy stochastyczne]] -->
 
  
 
==Pomiędzy czasem a częstością==
 
==Pomiędzy czasem a częstością==
Linia 25: Linia 25:
 
# [[Reprezentacje przybliżone | Przybliżenia adaptacyjne i algorytm matching pursuit]]
 
# [[Reprezentacje przybliżone | Przybliżenia adaptacyjne i algorytm matching pursuit]]
  
 +
==Analiza sygnałów wielozmiennych==
 +
# [[Analiza sygnałów wielowymiarowych | PCA, ICA, MVAR]]
 +
# [https://drive.google.com/file/d/13r8pa3BaDW8KPUGc9aIeXpgIj0Jeg4RH/ slajdy]
  
==Zastosowania==
+
==Analiza elektroencefalogramu (EEG)==
# [https://drive.google.com/file/d/10Nk2yK8prOttA_z869aqBuyGGNeZ0zZl/view problem odwrotny P300 SSVEP MEG]
+
# [https://drive.google.com/file/d/1d2kDzjrd4fO7fHELN8u7oeK3CnleDR-B/ Wstęp (slajdy)]
# [[Analiza sygnałów wielowymiarowych | Analiza sygnałów wielozmiennych]]
+
# [https://drive.google.com/file/d/1dMDndbgU3edlN1W1r1Oe9AbBUZJ_zCQJ/ problem odwrotny P300 SSVEP MEG (slajdy)]
# [https://drive.google.com/file/d/1yh3E_7LGemb4UNCuk8V40uqLe1hjLqql/view EEG]
+
# [https://drive.google.com/file/d/1VUzbwuPmLfhzDxW2shb07FBvnLO4EkLt ERD/ERS (slajdy)]
# [https://drive.google.com/file/d/10bta9aEuwAfT03gQZvXQrz_yrjLL6Oa9/view ICA, MVAR]
 
# [https://drive.google.com/file/d/1OQyQQHV_FoqN4FPba7C1Q994XTgYhHqn/view ERD/ERS]
 
 
# [https://braintech.pl/bci/ BCI]
 
# [https://braintech.pl/bci/ BCI]
 
  
 
==Materiały '''dodatkowe'''==
 
==Materiały '''dodatkowe'''==
 
* [https://www.fuw.edu.pl/~durka/filmy/ESM_BCI.mp4 Film o EEG i BCI] ~5 min
 
* [https://www.fuw.edu.pl/~durka/filmy/ESM_BCI.mp4 Film o EEG i BCI] ~5 min
*[https://drive.google.com/drive/folders/1GARsPvnIVnsvG6p5Vok7dgvnD2MrXHb2 Slajdy z wykładów 2022]
+
*[https://drive.google.com/drive/folders/1Dnx8WHsmEcXS5qCTJ5PCK5ghEn8glYwM Slajdy z wykładów 2023/24]
 
* [http://www.fuw.edu.pl/~durka/ksiazki/as Skrypt z równaniami w PDF]
 
* [http://www.fuw.edu.pl/~durka/ksiazki/as Skrypt z równaniami w PDF]
 
* [https://drive.google.com/file/d/18RGdihoaY-gWmVkB5kuBb-guIq_Zrkr8/view?usp=sharing Praktyczno-teoretyczne warsztaty z analizy sygnałów w przestrzeni czas-częstość (2020-09-07)] Wykład online ~2h
 
* [https://drive.google.com/file/d/18RGdihoaY-gWmVkB5kuBb-guIq_Zrkr8/view?usp=sharing Praktyczno-teoretyczne warsztaty z analizy sygnałów w przestrzeni czas-częstość (2020-09-07)] Wykład online ~2h
 
* [https://drive.google.com/file/d/1-B-mJwsVjFOfNpdqLJnb9nlsBWJ2UOO5 ''EEG analysis with examples in Svarog''], wideo po angielsku ~40 min
 
* [https://drive.google.com/file/d/1-B-mJwsVjFOfNpdqLJnb9nlsBWJ2UOO5 ''EEG analysis with examples in Svarog''], wideo po angielsku ~40 min
* [[Elektroencefalografia]] — Wstęp ogólny
+
* [[Elektroencefalografia]] — Wstęp ogólny do EEG
 
* [[Aliasing|Aliasing i Twierdzenie o próbkowaniu — animacja i dowód]]
 
* [[Aliasing|Aliasing i Twierdzenie o próbkowaniu — animacja i dowód]]
 +
<!--
 
* [https://drive.google.com/file/d/13XeXJ9yqEcflNXNz7Mpx3h5Hf4i6_a59 Notatki studentów 2022/2023]
 
* [https://drive.google.com/file/d/13XeXJ9yqEcflNXNz7Mpx3h5Hf4i6_a59 Notatki studentów 2022/2023]
 +
-->
 
* Książki:  
 
* Książki:  
 
** [https://www.fuw.edu.pl/~durka/ksiazki/UNI.html Matching Pursuit and Unification in EEG Analysis]
 
** [https://www.fuw.edu.pl/~durka/ksiazki/UNI.html Matching Pursuit and Unification in EEG Analysis]
Linia 51: Linia 53:
 
** [https://drive.google.com/file/d/0B47l6nponU4QVklqdzRGdTFHbHc Time-frequency microstructure of event-related EEG desynchronization (ERD) and synchronization (ERS)]
 
** [https://drive.google.com/file/d/0B47l6nponU4QVklqdzRGdTFHbHc Time-frequency microstructure of event-related EEG desynchronization (ERD) and synchronization (ERS)]
 
** [https://drive.google.com/file/d/1YK4v3v3oTINz7b78MqYyscePLlXV63nu Open Database of Epileptic EEG with MRI and Postoperational Assessment of Foci—a Real World Verification for the EEG Inverse Solutions]
 
** [https://drive.google.com/file/d/1YK4v3v3oTINz7b78MqYyscePLlXV63nu Open Database of Epileptic EEG with MRI and Postoperational Assessment of Foci—a Real World Verification for the EEG Inverse Solutions]
 +
** [https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-12-94 "Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog"]
 +
** [https://journal.frontiersin.org/article/10.3389/fnhum.2015.00258/full "Spindles in Svarog: framework and software for parametrization of EEG transients"].
 
** [https://drive.google.com/drive/folders/0B47l6nponU4Qc09oQkpMRDRfOXM?resourcekey=0-j5V5oFB3gSC3jtRCeCnF7Q&usp=share_link inne ]
 
** [https://drive.google.com/drive/folders/0B47l6nponU4Qc09oQkpMRDRfOXM?resourcekey=0-j5V5oFB3gSC3jtRCeCnF7Q&usp=share_link inne ]
 +
* [https://drive.google.com/drive/folders/1c545fMiLHmD-1BB7Qk_itbSa4eaqroAN?usp=sharing przykładowe sygnały do zabawy]
 
----
 
----
 
::::'''<big>[[AS_zagadnienia_do_egzaminu|ZAGADNIENIA DO POWTÓRZENIA PRZED EGZAMINEM i organizacja egzaminu]]</big>'''
 
::::'''<big>[[AS_zagadnienia_do_egzaminu|ZAGADNIENIA DO POWTÓRZENIA PRZED EGZAMINEM i organizacja egzaminu]]</big>'''

Wersja z 16:05, 22 lut 2024


Analiza Sygnałów

Wstęp

Klasyczna analiza sygnałów

  1. Szereg Fouriera
  2. Przekształcenie Fouriera
  3. Twierdzenie o splocie
  4. Estymacja widma na podstawie Transformaty Fouriera
  5. Systemy liniowe niezmiennicze w czasie
  6. Model autoregresyjny
  7. Transformata Z i widmo procesu AR
  8. Funkcja przejścia i filtry LTI

Pomiędzy czasem a częstością

  1. Spektrogram — oknowana transformata Fouriera
  2. Zasada nieoznaczoności
  3. Transformata Wignera
  4. Falki
  5. Reprezentacje czas-częstość
  6. Przybliżenia adaptacyjne i algorytm matching pursuit

Analiza sygnałów wielozmiennych

  1. PCA, ICA, MVAR
  2. slajdy

Analiza elektroencefalogramu (EEG)

  1. Wstęp (slajdy)
  2. problem odwrotny P300 SSVEP MEG (slajdy)
  3. ERD/ERS (slajdy)
  4. BCI

Materiały dodatkowe


ZAGADNIENIA DO POWTÓRZENIA PRZED EGZAMINEM i organizacja egzaminu


Zapraszamy do korzystania z aktualnej wersji omawianego na wykładzie i ćwiczeniach narzędzia do eksperymentowania z metodami analizy sygnałów — programu SVAROG. Instrukcja pobrania i uruchamiania jest w materiałach do ćwiczeń, najnowszą wersję można pobrać z gitlab lub bezpośrednio ze strony svarog.pl.


Całość podręcznika jest udostępniona na licencji Creative Commons Uznanie autorstwa-Na tych samych zasadach 3.0 Polska. CC-88x31.png Autor: Piotr Durka. Podręcznik powstał częściowo w oparciu o skrypty udostępniane wcześniej na stronach http://www.fuw.edu.pl/~durka/ksiazki/as i książkę MP and unification in EEG analysis