Wnioskowanie Statystyczne - wykład: Różnice pomiędzy wersjami

Z Brain-wiki
 
(Nie pokazano 67 wersji utworzonych przez 2 użytkowników)
Linia 1: Linia 1:
 
[[Category:Przedmioty specjalizacyjne]]
 
[[Category:Przedmioty specjalizacyjne]]
<!--
+
<!-- program ćwiczeń:
https://docs.google.com/document/d/1PHoVNlKhBkOVmkJzgvm7Tu7nF-aXlhWAEXTJbv5qqQY/edit
+
https://docs.google.com/document/d/1PHoVNlKhBkOVmkJzgvm7Tu7nF-aXlhWAEXTJbv5qqQY/edit -->
-->
 
 
 
 
 
 
=Wnioskowanie statystyczne (wykład)=
 
=Wnioskowanie statystyczne (wykład)=
 
 
'''UWAGA: wymagane zaliczenie Technologii Informacyjnych i Komunikacyjnych z ćwiczeniami z programowania w Pythonie w wymiarze 45 godzin ćwiczeń'''
 
'''UWAGA: wymagane zaliczenie Technologii Informacyjnych i Komunikacyjnych z ćwiczeniami z programowania w Pythonie w wymiarze 45 godzin ćwiczeń'''
 
 
#  
 
#  
 
## [[WnioskowanieStatystyczne/Rozklady|Rozkłady gęstości prawdopodobieństwa]]
 
## [[WnioskowanieStatystyczne/Rozklady|Rozkłady gęstości prawdopodobieństwa]]
Linia 18: Linia 13:
 
## [[WnioskowanieStatystyczne/wstep|Wstęp]]
 
## [[WnioskowanieStatystyczne/wstep|Wstęp]]
 
## [[WnioskowanieStatystyczne/Klasyczna_teoria|Teoria klasyczna]]
 
## [[WnioskowanieStatystyczne/Klasyczna_teoria|Teoria klasyczna]]
## [[WnioskowanieStatystyczne/Statystyki_i_estymatory|Statystyki i estymatory]]
+
## [[WnioskowanieStatystyczne/Statystyki_i_estymatory|Statystyki i estymatory]]
 
#
 
#
 
##  [[WnioskowanieStatystyczne/Weryfikacja_hipotez|Weryfikacja hipotez statystycznych]]  
 
##  [[WnioskowanieStatystyczne/Weryfikacja_hipotez|Weryfikacja hipotez statystycznych]]  
#
 
 
## [[WnioskowanieStatystyczne/Test_t|Test ''t'' Studenta]]
 
## [[WnioskowanieStatystyczne/Test_t|Test ''t'' Studenta]]
 
#
 
#
 
## [[WnioskowanieStatystyczne/Test_chi2|Test <math>\chi^2</math>]]
 
## [[WnioskowanieStatystyczne/Test_chi2|Test <math>\chi^2</math>]]
 +
#
 
##  [[WnioskowanieStatystyczne/Z_komputerem|Monte Carlo]]
 
##  [[WnioskowanieStatystyczne/Z_komputerem|Monte Carlo]]
 
#
 
#
Linia 36: Linia 31:
 
##  [[WnioskowanieStatystyczne/MLF|Metoda największej wiarygodności]]
 
##  [[WnioskowanieStatystyczne/MLF|Metoda największej wiarygodności]]
 
##  [[WnioskowanieStatystyczne/Regresja_liniowa|Regresja liniowa]]
 
##  [[WnioskowanieStatystyczne/Regresja_liniowa|Regresja liniowa]]
 +
#
 
##  [[WnioskowanieStatystyczne/Interpretacja współczynnika korelacji|Interpretacja współczynnika korelacji]]
 
##  [[WnioskowanieStatystyczne/Interpretacja współczynnika korelacji|Interpretacja współczynnika korelacji]]
 +
## [[WnioskowanieStatystyczne/Analiza_wariancji|Analiza wariancji]]
 
#
 
#
## [[WnioskowanieStatystyczne/Bonferroni|Problem porównań wielokrotnych  -- miejskie legendy i przepowiednie]]
+
## [[WnioskowanieStatystyczne/ROC|TP, FP, ROC]]
 
#
 
#
## [[WnioskowanieStatystyczne/Analiza_wariancji|Analiza wariancji]]
+
## [[WnioskowanieStatystyczne/Bonferroni|Problem porównań wielokrotnych — miejskie legendy i przepowiednie]]
 
#
 
#
 +
## [[WnioskowanieStatystyczne/Prawdopodobienstwo|Prawdopodobieństwo]]
 
## [[WnioskowanieStatystyczne/Twierdzenie_Bayesa|Twierdzenie Bayesa]]
 
## [[WnioskowanieStatystyczne/Twierdzenie_Bayesa|Twierdzenie Bayesa]]
## [[WnioskowanieStatystyczne/Prawdopodobienstwo|Prawdopodobieństwo]]
+
## [[WnioskowanieStatystyczne/Effect_size|Wielkość efektu]]
#
+
#  
## [[WnioskowanieStatystyczne/Elementy_statystyki_wielowymiarowej|Elementy statystyki wielowymiarowej]]
+
## [[WnioskowanieStatystyczne/Elementy_statystyki_wielowymiarowej|PCA, MANOVA, analiza skupień]]
#
+
## [[Sztuczne sieci neuronowe (ANN )|LDA, LR, ANN]]
## [[Sztuczne sieci neuronowe (ANN )|Sztuczne sieci neuronowe]]
 
 
## [[Algorytmy Genetyczne|Algorytmy Genetyczne]]
 
## [[Algorytmy Genetyczne|Algorytmy Genetyczne]]
 +
# Maris, E., Oostenveld, R. (2007). [https://www.researchgate.net/publication/6316066_Nonparametric_statistical_testing_of_EEG-_and_MEG-data Nonparametric statistical testing of EEG- and MEG-data]. Journal of Neuroscience Methods, 164(1), 177–190.
 +
  
 +
----
  
{{color|green|'''Całość podręcznika jest udostępniona na licencji [http://creativecommons.org/licenses/by-sa/3.0/pl Creative Commons Uznanie autorstwa-Na tych samych zasadach 3.0 Polska].'''}} [[Grafika:CC-88x31.png]]
+
{{color|green|'''Całość podręcznika jest udostępniona na licencji [http://creativecommons.org/licenses/by-sa/3.0/pl Creative Commons Uznanie autorstwa-Na tych samych zasadach 3.0 Polska].'''}} [[Grafika:CC-88x31.png]]  
Autor: [http://durka.name Piotr Durka].
+
Na podstawie książki [https://www.fuw.edu.pl/~durka/ksiazki/statystyka/index.html Wstęp do współczesnej statystyki]. Autor: [http://durka.name Piotr Durka].
  
 +
----
  
[https://drive.google.com/drive/folders/1yPKnOfmO3dEp0SeslNXwSfOoPzQFSanc?usp=sharing slajdy z wykładów]
+
*[https://drive.google.com/drive/folders/1yPKnOfmO3dEp0SeslNXwSfOoPzQFSanc?usp=sharing slajdy z wykładów]
 +
* [https://drive.google.com/drive/folders/17gUnDAzVKY1CRQ4ExTqsjwYgXTJ-eWnq zapisy wideo zajęć zdalnych w 2021]
 +
* książka [https://www.deeplearningbook.org "Deep Learning"] Ian Goodfellow, Yoshua Bengio and Aaron Courville
  
===zasady zaliczenia przedmiotu===
+
=Egzamin i zaliczenie=
 +
Do egzaminu podchodzą osoby, które zaliczą [[Wnioskowanie_Statystyczne_-_ćwiczenia | ćwiczenia]] — w braku zaliczonych ćwiczeń wynik egzaminu z wykładu nie "przenosi się" na przyszły rok. Egzamin składał się będzie z testu jednokrotnego wyboru (<math>N</math> pytań, każde z czterema odpowiedziami do wyboru, bez punktów ujemnych za błędne odpowiedzi, ale z korektą dla <math>p</math> poprawnych odpowiedzi
 +
<math>
 +
p_{\% kor} = \frac{p - N/4}{N - N/4}
 +
</math>
 +
po jednym punkcie za poprawną) i kilku pytań otwartych (po 2—4 punkty). Ostateczne przeliczenie punktów na oceny, jednakowe dla wszystkich, będzie ustalone a posteriori na podstawie statystyki i zdrowego rozsądku — w każdym razie próg zaliczenia powinien wyraźnie przekraczać 50% (po korekcie na odpowiedzi przypadkowe w części testowej).
  
Punktacja [[Wnioskowanie_Statystyczne_-_ćwiczenia | ćwiczeń]]:
+
Ocena końcowa z przedmiotu = średnia ocen z ćwiczeń i z wykładu, pod warunkiem zaliczenia ćwiczeń '''i''' wykładu (koniunkcja warunków).
*'''Kolokwium (20 pkt)'''
 
**30.05.2019, godz. 09:00, sale 1.27, 1.28, 1.29
 
**praca na komputerze
 
**zakres: zmienne losowe, przedziały ufności, testowanie hipotez
 
**możliwość korzystania z własnych notatek i programów
 
**''kolokwium poprawkowe: 19.06.2019, 09:00, sala 1.27''
 
*'''4 kartkówki (4x5 = 20 pkt)'''
 
**data i zakres zapowiedziany z min. tygodniowym wyprzedzeniem
 
**polecenia będą obejmować przykładowo naszkicowanie zadanego rozkładu, podania definicji czy przeprowadzenia prostego rachunku
 
*'''Projekt (10 pkt)'''
 
**kod do napisania i indywidualnej obrony u prowadzącego do 15.06.2019
 
**zakres: chi2
 
**propozycje zadań zostaną podane w trakcie semestru
 
*Obecności
 
**Obecność na ćwiczeniach jest obowiązkowa. Dopuszczalne są dwie nieusprawiedliwione nieobecności. Za każdą kolejną odejmowanych jest 5 punktów.
 
  
Zaliczenie ćwiczeń:
+
==Organizacja egzaminu==
* Minimum 25 pkt łącznie
 
Zaliczenie ćwiczeń jest warunkiem koniecznym dopuszczenia do egzaminu pisemnego (z wykładu).
 
  
Zaliczenie wykładu:
+
Egzamin rozpocznie się w piątek 28 czerwca 2024 o godzinie 10 rano w sali 0.06 (Pasteura 5).  
* Egzamin pisemny
 
składać się będzie z dwóch części: pytań zamkniętych jednokrotnego wyboru (analogicznie jak na egzaminie z TI) oraz pytań otwartych, na przykład:
 
** Sformułuj Centralne Twierdzenie Graniczne.
 
** Wypisz i przedyskutuj definicje prawdopodobieństwa.
 
** Wypisz założenia wersji Centralnego Twierdzenia Granicznego, którą można stosunkowo prosto udowodnić (twierdzenie Lindeberga-Levy'ego). Udowodnij lub spróbuj nakreślić szkic dowodu.
 
** Oblicz wartość oczekiwaną rozkładu równomiernego, określonego na odcinku [0, 2], danego wzorami  p(''x'') =  0,5 dla <math>0\leq x\leq 2</math> i p(''x'') =  0 dla ''x''>2  lub  ''x''<0.
 
** Oblicz wariancję rozkładu równomiernego określonego na odcinku [0, 2], danego wzorami  p(''x'') =  0,5 dla <math>0\leq x\leq 2</math> i p(''x'') =  0 dla ''x''>2 lub  ''x''<0
 
** Co to jest <math>\chi^2</math>?
 
** Wypisz / wyprowadź wzory na wartość oczekiwaną i wariancję rozkładu Poissona.
 
** Z rozkładu dwumianowego wylicz prawdopodobieństwo, że wśród czworga dzieci będą co najmniej trzy dziewczynki — zakładając, że prawdopodobieństwa urodzenia dziecka każdej płci są równe.
 
** Testy parametryczne i nieparametryczne: wady, zalety, przykłady.
 
** Co ma wspólnego poziom istotności testu z poprawką Bonferroniego?
 
** Co to jest i jak obliczamy moc testu?
 
** Opisz w punktach (zwięźle i konkretnie) procedurę weryfikacji hipotezy o różnicy średnich dwóch grup wyników <math>\{x_{i}, i=1\dots N$\}</math> i <math>\{y_{j}, j=1\dots M\}</math> metodą repróbkowania (resampling).
 
** Wyprowadź wzór na średnią ''N'' pomiarów <math>x_i</math> o różnych wariancjach <math>\sigma_{i}^2</math> z metody największej wiarygodności.
 
** Dany jest zbiór rozłącznych hipotez <math>H_{i}</math> pokrywających całą przestrzeń zdarzeń <math>\Omega</math>: <math>\sum_{i}H_{i}=\Omega</math> oraz prawdopodobieństwa wyniku eksperymentu W w świetle każdej z hipotez <math>H_{i}</math>, czyli <math>P(W\mid H_{i})</math>. Korzystając z tych oznaczeń, wypisz i wyprowadź twierdzenie Bayesa, czyli wzór na prawdopodobieństwo prawdziwości hipotezy <math>H_{j}</math> w świetle wyników eksperymentu W.
 
  
 +
* nie wychodzimy z sali w trakcie egzaminu — bardzo proszę o przygotowanie się pod tym kątem :)
 +
* nie ściągamy. To niemodne i passé, a przeprowadzenie egzaminu w przyjaznej atmosferze leży w Waszym interesie
 +
<!--
 +
* osoby, które uczestniczyły intelektualnie w wykładzie (popartym obszernymi materiałami dostępnymi w Internecie) powinny napisać test w ok. godziny, ale "na zapas" gwarantujemy w sumie 90 minut od momentu rozdania testów.
 +
-->
 +
* dla zachowania przyjaznej atmosfery i oddalenia pokus nieetycznych zachowań, torby/teczki/ubrania nie pozostawione w szatni zostawiamy na podłodze na froncie sali. Do ławki zabieramy ze sobą tylko długopis (lub dwa) oraz dowolne ID ze zdjęciem, które okazujemy na ew. prośbę Prowadzących (elegancko jest od razu położyć ID na brzegu ławki po podpisaniu testu)
 +
* w ławkach siadamy, zajmując dostępną przestrzeń możliwie równomiernie według wskazań Prowadzących, poczynając od pierwszych ławek
 +
* nie jest dopuszczalny kontakt z urządzeniami komunikacyjnymi i/lub elektronicznymi. Jeśli ktoś oczekuje pilnego telefonu w czasie egzaminu, powinien ten fakt zgłosić Prowadzącym _przed_ rozpoczęciem egzaminu. W pozostałych wypadkach telefony (po wyciszeniu a najlepiej wyłączeniu) itp. urządzenia potencjalnie komunikacyjne i elektroniczne pozostawiamy w torbach lub ew. w kieszeniach i nie wyjmujemy w czasie egzaminu. Do wykonania nielicznych wyliczeń wystarczy głowa, ew. długopis
 +
* odpowiedzi na pytania testowe będziemy wpisywać "na czysto" w tabelce przed samym oddaniem testu, strony z pytaniami testowymi można dowolnie pomazać, oznaczenia na pytaniach nie będą brane pod uwagę przy sprawdzaniu
 +
* odpowiedzi do pytań otwartych wpisujemy maksymalnie czytelnie i "na czysto". Nieczytelne i niewyraźne wywody nie będą sprawdzane. Kartki użyte jako brudnopis przed oddaniem przekreślamy.
 +
* oddajemy kompletne arkusze wraz z notatkami i brudnopisami, nie jest dozwolone robienie kopii "na pamiątkę".
  
Ocena końcowa z przedmiotu = średnia ocen z ćwiczeń i z wykładu, pod warunkiem zaliczenia ćwiczeń '''i''' wykładu.
+
==Tematy do przemyślenia przed egzaminem ==
 +
Dla ustalenia uwagi, na przykład:
 +
* Sformułuj Centralne Twierdzenie Graniczne.
 +
* Wypisz i przedyskutuj definicje prawdopodobieństwa.
 +
* Wypisz założenia wersji Centralnego Twierdzenia Granicznego, którą można stosunkowo prosto udowodnić (twierdzenie Lindeberga-Levy'ego). Udowodnij lub spróbuj nakreślić szkic dowodu.
 +
* Oblicz wartość oczekiwaną rozkładu równomiernego, określonego na odcinku [0, 2], danego wzorami  p(''x'') =  0,5 dla <math>0\leq x\leq 2</math> i p(''x'') =  0 dla ''x''>2  lub  ''x''<0.
 +
* Oblicz wariancję rozkładu równomiernego określonego na odcinku [0, 2], danego wzorami  p(''x'') =  0,5 dla <math>0\leq x\leq 2</math> i p(''x'') =  0 dla ''x''>2 lub  ''x''<0
 +
* Co to jest <math>\chi^2</math>?
 +
* Wypisz / wyprowadź wzory na wartość oczekiwaną i wariancję rozkładu Poissona.
 +
* Z rozkładu dwumianowego wylicz prawdopodobieństwo, że wśród czworga dzieci będą co najmniej trzy dziewczynki — zakładając, że prawdopodobieństwa urodzenia dziecka każdej płci są równe.
 +
* Testy parametryczne i nieparametryczne: wady, zalety, przykłady.
 +
* Co ma wspólnego poziom istotności testu z poprawką Bonferroniego?
 +
* Co to jest i jak obliczamy moc testu?
 +
* Opisz w punktach (zwięźle i konkretnie) procedurę weryfikacji hipotezy o różnicy średnich dwóch grup wyników <math>\{x_{i}, i=1\dots N\}</math> i <math>\{y_{j}, j=1\dots M\}</math> metodą repróbkowania (resampling).
 +
* Wyprowadź wzór na średnią ''N'' pomiarów <math>x_i</math> o różnych wariancjach <math>\sigma_{i}^2</math> z metody największej wiarygodności.
 +
* Dany jest zbiór rozłącznych hipotez <math>H_{i}</math> pokrywających całą przestrzeń zdarzeń <math>\Omega</math>: <math>\sum_{i}H_{i}=\Omega</math> oraz prawdopodobieństwa wyniku eksperymentu W w świetle każdej z hipotez <math>H_{i}</math>, czyli <math>P(W\mid H_{i})</math>. Korzystając z tych oznaczeń, wypisz i wyprowadź twierdzenie Bayesa, czyli wzór na prawdopodobieństwo prawdziwości hipotezy <math>H_{j}</math> w świetle wyników eksperymentu W.
 +
* Wyjaśnij różnicę między poziomem istotności hipotezy o różnicy średnich a rozmiarem efektu, wyliczonymi dla tych samych danych.
 +
* Opisz w kategoriach wejścia i wyjścia algorytmy realizujące: regresję liniową, regresję logistyczną, liniową analizę dyskryminacyjną, analizę skupień, analizę wariancji i analizę składowych głównych.

Aktualna wersja na dzień 18:11, 23 maj 2024

Wnioskowanie statystyczne (wykład)

UWAGA: wymagane zaliczenie Technologii Informacyjnych i Komunikacyjnych z ćwiczeniami z programowania w Pythonie w wymiarze 45 godzin ćwiczeń

    1. Rozkłady gęstości prawdopodobieństwa
    2. Wariancja, mediana...
    3. Przykładowe rozkłady
    1. Centralne Twierdzenie Graniczne
    1. Wstęp
    2. Teoria klasyczna
    3. Statystyki i estymatory
    1. Weryfikacja hipotez statystycznych
    2. Test t Studenta
    1. Test [math]\chi^2[/math]
    1. Monte Carlo
    1. Testy nieparametryczne
    2. Test serii
    3. Test Wilcoxona-Manna-Whitneya
    1. Testy permutacyjne
    2. Bootstrap
    1. Metoda największej wiarygodności
    2. Regresja liniowa
    1. Interpretacja współczynnika korelacji
    2. Analiza wariancji
    1. TP, FP, ROC
    1. Problem porównań wielokrotnych — miejskie legendy i przepowiednie
    1. Prawdopodobieństwo
    2. Twierdzenie Bayesa
    3. Wielkość efektu
    1. PCA, MANOVA, analiza skupień
    2. LDA, LR, ANN
    3. Algorytmy Genetyczne
  1. Maris, E., Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190.



Całość podręcznika jest udostępniona na licencji Creative Commons Uznanie autorstwa-Na tych samych zasadach 3.0 Polska. CC-88x31.png Na podstawie książki Wstęp do współczesnej statystyki. Autor: Piotr Durka.


Egzamin i zaliczenie

Do egzaminu podchodzą osoby, które zaliczą ćwiczenia — w braku zaliczonych ćwiczeń wynik egzaminu z wykładu nie "przenosi się" na przyszły rok. Egzamin składał się będzie z testu jednokrotnego wyboru ([math]N[/math] pytań, każde z czterema odpowiedziami do wyboru, bez punktów ujemnych za błędne odpowiedzi, ale z korektą dla [math]p[/math] poprawnych odpowiedzi [math] p_{\% kor} = \frac{p - N/4}{N - N/4} [/math] po jednym punkcie za poprawną) i kilku pytań otwartych (po 2—4 punkty). Ostateczne przeliczenie punktów na oceny, jednakowe dla wszystkich, będzie ustalone a posteriori na podstawie statystyki i zdrowego rozsądku — w każdym razie próg zaliczenia powinien wyraźnie przekraczać 50% (po korekcie na odpowiedzi przypadkowe w części testowej).

Ocena końcowa z przedmiotu = średnia ocen z ćwiczeń i z wykładu, pod warunkiem zaliczenia ćwiczeń i wykładu (koniunkcja warunków).

Organizacja egzaminu

Egzamin rozpocznie się w piątek 28 czerwca 2024 o godzinie 10 rano w sali 0.06 (Pasteura 5).

  • nie wychodzimy z sali w trakcie egzaminu — bardzo proszę o przygotowanie się pod tym kątem :)
  • nie ściągamy. To niemodne i passé, a przeprowadzenie egzaminu w przyjaznej atmosferze leży w Waszym interesie
  • dla zachowania przyjaznej atmosfery i oddalenia pokus nieetycznych zachowań, torby/teczki/ubrania nie pozostawione w szatni zostawiamy na podłodze na froncie sali. Do ławki zabieramy ze sobą tylko długopis (lub dwa) oraz dowolne ID ze zdjęciem, które okazujemy na ew. prośbę Prowadzących (elegancko jest od razu położyć ID na brzegu ławki po podpisaniu testu)
  • w ławkach siadamy, zajmując dostępną przestrzeń możliwie równomiernie według wskazań Prowadzących, poczynając od pierwszych ławek
  • nie jest dopuszczalny kontakt z urządzeniami komunikacyjnymi i/lub elektronicznymi. Jeśli ktoś oczekuje pilnego telefonu w czasie egzaminu, powinien ten fakt zgłosić Prowadzącym _przed_ rozpoczęciem egzaminu. W pozostałych wypadkach telefony (po wyciszeniu a najlepiej wyłączeniu) itp. urządzenia potencjalnie komunikacyjne i elektroniczne pozostawiamy w torbach lub ew. w kieszeniach i nie wyjmujemy w czasie egzaminu. Do wykonania nielicznych wyliczeń wystarczy głowa, ew. długopis
  • odpowiedzi na pytania testowe będziemy wpisywać "na czysto" w tabelce przed samym oddaniem testu, strony z pytaniami testowymi można dowolnie pomazać, oznaczenia na pytaniach nie będą brane pod uwagę przy sprawdzaniu
  • odpowiedzi do pytań otwartych wpisujemy maksymalnie czytelnie i "na czysto". Nieczytelne i niewyraźne wywody nie będą sprawdzane. Kartki użyte jako brudnopis przed oddaniem przekreślamy.
  • oddajemy kompletne arkusze wraz z notatkami i brudnopisami, nie jest dozwolone robienie kopii "na pamiątkę".

Tematy do przemyślenia przed egzaminem

Dla ustalenia uwagi, na przykład:

  • Sformułuj Centralne Twierdzenie Graniczne.
  • Wypisz i przedyskutuj definicje prawdopodobieństwa.
  • Wypisz założenia wersji Centralnego Twierdzenia Granicznego, którą można stosunkowo prosto udowodnić (twierdzenie Lindeberga-Levy'ego). Udowodnij lub spróbuj nakreślić szkic dowodu.
  • Oblicz wartość oczekiwaną rozkładu równomiernego, określonego na odcinku [0, 2], danego wzorami p(x) = 0,5 dla [math]0\leq x\leq 2[/math] i p(x) = 0 dla x>2 lub x<0.
  • Oblicz wariancję rozkładu równomiernego określonego na odcinku [0, 2], danego wzorami p(x) = 0,5 dla [math]0\leq x\leq 2[/math] i p(x) = 0 dla x>2 lub x<0
  • Co to jest [math]\chi^2[/math]?
  • Wypisz / wyprowadź wzory na wartość oczekiwaną i wariancję rozkładu Poissona.
  • Z rozkładu dwumianowego wylicz prawdopodobieństwo, że wśród czworga dzieci będą co najmniej trzy dziewczynki — zakładając, że prawdopodobieństwa urodzenia dziecka każdej płci są równe.
  • Testy parametryczne i nieparametryczne: wady, zalety, przykłady.
  • Co ma wspólnego poziom istotności testu z poprawką Bonferroniego?
  • Co to jest i jak obliczamy moc testu?
  • Opisz w punktach (zwięźle i konkretnie) procedurę weryfikacji hipotezy o różnicy średnich dwóch grup wyników [math]\{x_{i}, i=1\dots N\}[/math] i [math]\{y_{j}, j=1\dots M\}[/math] metodą repróbkowania (resampling).
  • Wyprowadź wzór na średnią N pomiarów [math]x_i[/math] o różnych wariancjach [math]\sigma_{i}^2[/math] z metody największej wiarygodności.
  • Dany jest zbiór rozłącznych hipotez [math]H_{i}[/math] pokrywających całą przestrzeń zdarzeń [math]\Omega[/math]: [math]\sum_{i}H_{i}=\Omega[/math] oraz prawdopodobieństwa wyniku eksperymentu W w świetle każdej z hipotez [math]H_{i}[/math], czyli [math]P(W\mid H_{i})[/math]. Korzystając z tych oznaczeń, wypisz i wyprowadź twierdzenie Bayesa, czyli wzór na prawdopodobieństwo prawdziwości hipotezy [math]H_{j}[/math] w świetle wyników eksperymentu W.
  • Wyjaśnij różnicę między poziomem istotności hipotezy o różnicy średnich a rozmiarem efektu, wyliczonymi dla tych samych danych.
  • Opisz w kategoriach wejścia i wyjścia algorytmy realizujące: regresję liniową, regresję logistyczną, liniową analizę dyskryminacyjną, analizę skupień, analizę wariancji i analizę składowych głównych.