Matematyka 1NI/Ciągi zwykłe

Z Brain-wiki

Ciągi zwykłe

Zadanie 1

Znaleźć granicę ciągu:

[math] a_n=\frac{n-\sqrt[3]{n^3+2n}}{n-\sqrt[3]{n^3+3n}}\; . \, [/math]




Zadanie 2

Znaleźć granicę ciągu:

[math] a_n=\sqrt[4]{n}\left(\sqrt[4]{n+\sqrt{n}}-\sqrt[4]{n-\sqrt{n}}\right)\; . \,[/math]




Zadanie 3

Znaleźć granicę ciągu:

[math] a_n=\frac{5^n+n^24^n}{5^{n+1}+n4^{n+1}}\; . \,[/math]



{{hidden| ta1=left | ta2=left | bg1=#8FBC8F | | header = Rozwiązanie | content = Wyłączymy z licznika i mianownika wiodące wyrazy, jakimi są odpowiednio [math]5^n\,[/math] oraz [math]5^{n+1}\,[/math]. Otrzymujemy:

[math] a_n= \frac{5^n}{5^{n+1}}\cdot \frac{1+n^2(4/5)^n}{1+n(4/5)^{n+1}}\; , \,[/math]

Na mocy kryterium Cauchy'ego zachodzi: [math]n^2(4/5)^n\underset{n\rightarrow\infty}{\longrightarrow}0\,[/math]. Mamy bowiem

[math] \lim_{n\rightarrow\infty}\sqrt[n]{n^2\left(\frac{4}{5}\right)^n}=\frac{4}{5}\,\lim_{n\rightarrow\infty}\sqrt[n]{n^2}=\frac{4}{5}\lt 1\; . \,[/math]

Podobnie: [math]n(4/5)^{n+1}\underset{n\rightarrow\infty}{\longrightarrow}0\,[/math], gdyż

[math] \lim_{n\rightarrow\infty}\sqrt[n]{n\left(\frac{4}{5}\right)^{n+1}}=\frac{4}{5}\,\lim_{n\rightarrow\infty}\sqrt[n]{\frac{4n}{5}}=\frac{4}{5}\lt 1\; . \,[/math]

W konsekwencji otrzymujemy

[math] \lim_{n\rightarrow\infty}a_n=\frac{1}{5}\; . \,[/math]</equation id="eq:eq4">

}}


Zadanie 4

Znaleźć granicę ciągu: <equation id="eq:cia4">

[math] a_n=\sqrt[n]{1^n+2^{n-1}+3^{n-2}+\ldots +10^{n-9}}\; . \,[/math]




Zadanie 5

Znaleźć granicę ciągu:

[math] a_n=\frac{1}{7^n}\left(\begin{array}{c}3n\\ 2n\end{array} \right)\; . \,[/math]




Zadanie 6

Znaleźć granicę ciągu:

[math] a_n=\frac{n!\,n^n}{(2n)!}\; . \,[/math]




Zadanie 7

Znaleźć granicę ciągu:

[math] a_n=(n^5+2^n)\left(1-\frac{1}{2n}\right)^{n^2}\; . \,[/math]




Zadanie 8

Znaleźć granicę ciągu:

[math] a_n=\frac{\sqrt{2}+\sqrt{4}+\ldots +\sqrt{2n}}{n\sqrt{n}}\; . \,[/math]




Zadanie 9

Znaleźć granicę ciągu:

[math] a_n=\frac{\sqrt[3]{1}+\sqrt[3]{3}+\ldots +\sqrt[3]{2n+1}}{n\sqrt[3]{n}}\; . \,[/math]




Zadanie 10

Znaleźć granicę ciągu:

[math] a_n=\left(1+\sin\frac{1}{n}\right)^{\log^{-1}\left(\frac{n+1}{n}\right)}\; . \,[/math]




Zadanie 11

Znaleźć granicę ciągu:

[math] a_n=\left(\frac{\alpha n+n^2}{1+\beta n + n^2}\right)^{2n}\; , \,[/math]

gdzie [math]\alpha,\beta\in\mathbb{R}\,[/math].



Zadanie 12

Znaleźć granicę ciągu:

[math] a_n=\frac{n^{10}2^n+4^n+\log^{100}n}{(n^2+2^n)(n^3+2^n)}\; . \,[/math]




Zadanie 13

Znaleźć granicę ciągu:

[math] a_n=\frac{n^2}{\sqrt[n]{(2n)!}}\; . \,[/math]




Zadanie 14

Znaleźć granicę ciągu:

[math] a_n=\frac{1}{\sqrt[n]{2}-1}-\frac{2\sqrt[n]{2}+1}{\sqrt[n]{8}-1}\; . \,[/math]




Zadanie 15

Znaleźć granicę ciągu:

[math] a_n=\frac{3^n}{(1+\frac{1}{2n})(1+\frac{3}{2n})\cdot\ldots\cdot(1+\frac{2n+1}{2n})}\; . \,[/math]




Zadanie 16

Znaleźć granicę ciągu:

[math] a_n=\left(1+\frac{1}{1\cdot 3}\right)\left(1+\frac{1}{2\cdot 4}\right)\cdot\ldots\cdot \left(1+\frac{1}{n(n+2)}\right)\; . \,[/math]




Zadanie 17

Tak dobrać parametr [math]\beta\in\mathbb{R}\,[/math], aby ciąg postaci:

[math] a_n=\left(\beta\,\arcsin\frac{n}{2n+3}\right)^n\; , \,[/math]

był zbieżny do granicy różnej od zera. Znaleźć tę granicę.



Zadanie 18

Znaleźć granicę ciągu:

[math] a_n=\frac{n!}{(\sqrt[n]{n!}-1)^n}\; . \, [/math]




Zadanie 19

Znaleźć granicę ciągu:

[math] a_n=\frac{\sqrt[n]{5}-\sqrt[n]{4}}{\sqrt[n]{3}-\sqrt[n]{2}}\; . \, [/math]




Zadanie 20

Zbadać zbieżność ciągu:

[math] a_n=\left[(-1)^n+\frac{1+3(-1)^n}{2n}\right]^n\; . \, [/math]




Zadanie 21

Zbadać zbieżność ciągu:

[math] a_n=\sin\left(\pi\sqrt[4]{n^4+n}\right)\; . \, [/math]




Zadanie 22

Zbadać zbieżność ciągu:

[math] a_n=\cos\left(\pi\sqrt[4]{n^4+n}\right)\; . \, [/math]




Zadanie 23

Zbadać zbieżność ciągu:

[math] a_n=\sin\left(\frac{\pi}{4}\cdot\frac{2n^2+n+2}{2n+1}\right) \, [/math]