WnioskowanieStatystyczne/Interpretacja współczynnika korelacji: Różnice pomiędzy wersjami

Z Brain-wiki
(Nie pokazano 4 pośrednich wersji utworzonych przez tego samego użytkownika)
Linia 22: Linia 22:
 
</math>  
 
</math>  
  
Całkowitą wariancię zmiennej <math>y</math> podzieliliśmy na dwa
+
Całkowitą wariancję zmiennej <math>y</math> podzieliliśmy na dwa
 
człony: wariancję estymaty <math>y_{i}^{p}</math> wokół wartości
 
człony: wariancję estymaty <math>y_{i}^{p}</math> wokół wartości
 
średniej <math>\overline{y}</math> i wariancję obserwowanych
 
średniej <math>\overline{y}</math> i wariancję obserwowanych
 
<math>y_{i}</math> wokół estymaty <math>y_{i}^{p}</math> (trzeci człon
 
<math>y_{i}</math> wokół estymaty <math>y_{i}^{p}</math> (trzeci człon
[https://en.wikipedia.org/wiki/Explained_sum_of_squares#Simple_derivation znika]).
+
[https://en.wikipedia.org/wiki/Explained_sum_of_squares#Simple_derivation znika]):
 +
 
 +
 
 +
<math>
 +
\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2}=
 +
\underset{i=1}{\overset{N}{\sum }}(y_{i}-y_{i}^{p})^{2}+\underset{i=1}{
 +
\overset{N}{\sum }}(y_{i}^{p}-\overline{y})^{2}
 +
</math>
 +
 
 +
 
  
 
===Współczynnik korelacji liniowej (Pearsona)===
 
===Współczynnik korelacji liniowej (Pearsona)===
Linia 105: Linia 114:
 
</math>
 
</math>
  
 
przykłady interpretacji podaje też [https://en.wikipedia.org/wiki/Correlation_and_dependence artykuł z Wikipedii]
 
  
  
[[Plik:Korelacja.png|600px|thumb|left|<figure id="fig:rozw2"></figure>Przykładowe wartości współczynnika korelacji dla 300 par <math>(x, y)</math> o
+
[[Plik:Korelacja.png|600px|thumb|center|<figure id="fig:rozw2"></figure>Przykładowe wartości współczynnika korelacji dla 300 par <math>(x, y)</math> o
 
różnych stopniach współzależności.
 
różnych stopniach współzależności.
 
]]
 
]]
 +
 +
 +
Ciekawe przykłady korelacji liniowych dla zależności nieliniowych podaje [https://pl.wikipedia.org/wiki/Zale%C5%BCno%C5%9B%C4%87_zmiennych_losowych artykuł z Wikipedii]

Wersja z 16:57, 5 maj 2025

Wnioskowanie_Statystyczne_-_wykład


Interpretacja współczynnika korelacji

Rozważmy wariancję zmiennej [math]y[/math] z poprzedniego rozdziału. Niech [math]y_{i}^{p}=a+bx_{i}[/math]

Wsp kor war.png


[math] \underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2}= \underset{i=1}{\overset{N}{\sum }}(y_{i}-y_{i}^{p}+y_{i}^{p}-\overline{y} )^{2}= [/math] [math] \underset{i=1}{\overset{N}{\sum }}(y_{i}-y_{i}^{p})^{2}+\underset{i=1}{ \overset{N}{\sum }}(y_{i}^{p}-\overline{y})^{2}+2\underset{i=1}{\overset{N}{ \sum }}(y_{i}-y_{i}^{p})(y_{i}^{p}-\overline{y}) [/math]

Całkowitą wariancję zmiennej [math]y[/math] podzieliliśmy na dwa człony: wariancję estymaty [math]y_{i}^{p}[/math] wokół wartości średniej [math]\overline{y}[/math] i wariancję obserwowanych [math]y_{i}[/math] wokół estymaty [math]y_{i}^{p}[/math] (trzeci człon znika):


[math] \underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2}= \underset{i=1}{\overset{N}{\sum }}(y_{i}-y_{i}^{p})^{2}+\underset{i=1}{ \overset{N}{\sum }}(y_{i}^{p}-\overline{y})^{2} [/math]


Współczynnik korelacji liniowej (Pearsona)

przypominamy wyprowadzone w poprzednim rozdziale zależności:


[math] b=\frac{\underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x})(y_{i}- \overline{y})}{\underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x})^{2}}, \qquad a=\overline{y}-b\overline{x} [/math]


oraz wzór na estymator współczynnika korelacji liniowej


[math] r_{x, y}= \frac{\sigma_{x, y}}{\sigma_x \sigma_y}= \frac{E\left( \left(x-\mu_{x})(y-\mu_{y}\right)\right)} {\sqrt{E\left( (x-\mu_{x})^2\right) E\left( (y-\mu_{y})^2\right)}}, [/math]


jego kwadrat estymujemy jako


[math] r^{2}=\frac{\left( \underset{i=1}{\overset{N}{\sum }}(x_{i}- \overline{x})(y_{i}-\overline{y})\right) ^{2}}{\underset{i=1}{\overset{N}{ \sum }}(x_{i}-\overline{x})^{2}\underset{i=1}{\overset{N}{\sum }}(y_{i}- \overline{y})^{2}} [/math]


Podstawiając [math] \forall_i (y_i - \overline{y}) = b (x_i - \overline{x} ) [/math], oraz [math] b=\frac{\underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x})(y_{i}- \overline{y})}{\underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x})^{2}} [/math]


do wyrażenia na wariancję tłumaczoną przez model


[math]\underset{i=1}{\overset{N}{\sum }}(y_{i}^{p}-\overline{y})^{2} [/math],

dostajemy:


[math] \underset{i=1}{\overset{N}{\sum }}(y_{i}^{p}-\overline{y})^{2} = b \underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x})^{2} =\frac{\left( \underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x})(y_{i}-\overline{y} )\right) ^{2}}{\left( \underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x} )^{2}\right) ^{2}}\underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x} )^{2}=\\ =\frac{\left( \underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x} )(y_{i}-\overline{y})\right) ^{2}}{\underset{i=1}{\overset{N}{\sum }}(x_{i}- \overline{x})^{2}}\frac{\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y} )^{2}}{\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2}}=r^{2} \underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2} [/math]


czyli


[math] {r^{2}=\frac{\underset{i=1}{\overset{N}{\sum }}(y_{i}^{p}- \overline{y})^{2}}{\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2} }\ } [/math]


Przykładowe wartości współczynnika korelacji dla 300 par [math](x, y)[/math] o różnych stopniach współzależności.


Ciekawe przykłady korelacji liniowych dla zależności nieliniowych podaje artykuł z Wikipedii