Z Brain-wiki
Skocz do: nawigacja, szukaj


Wnioskowanie statystyczne (wykład)

    1. Rozkłady gęstości prawdopodobieństwa
    2. Wariancja, mediana...
    3. Przykładowe rozkłady
    1. Centralne Twierdzenie Graniczne
    1. Wstęp
    2. Teoria klasyczna
    3. Statystyki i estymatory
    1. Weryfikacja hipotez statystycznych
    1. Test t Studenta
    1. Test \chi^2
    2. Monte Carlo
    1. Testy nieparametryczne
    2. Test serii
    3. Test Wilcoxona-Manna-Whitneya
    1. Testy permutacyjne
    2. Bootstrap
    1. Metoda największej wiarygodności
    2. Regresja liniowa
    3. Interpretacja współczynnika korelacji
    1. Problem porównań wielokrotnych -- miejskie legendy i przepowiednie
    1. Analiza wariancji
    1. Twierdzenie Bayesa
    2. Prawdopodobieństwo
    1. Elementy statystyki wielowymiarowej
    1. Sztuczne sieci neuronowe
    2. Algorytmy Genetyczne


Całość podręcznika jest udostępniona na licencji Creative Commons Uznanie autorstwa-Na tych samych zasadach 3.0 Polska. CC-88x31.png Autor: Piotr Durka.


slajdy z wykładów

zasady zaliczenia przedmiotu

Punktacja ćwiczeń:

  • Kolokwium (20 pkt)
    • 27.05.2019, godz. 09:00, sale 1.27, 1.28, 1.29
    • praca na komputerze
    • zakres: zmienne losowe, przedziały ufności, testowanie hipotez
    • możliwość korzystania z własnych notatek i programów
    • kolokwium poprawkowe: 19.06.2019, 09:00, sala 1.27
  • 4 kartkówki (4x5 = 20 pkt)
    • data i zakres zapowiedziany z min. tygodniowym wyprzedzeniem
    • polecenia będą obejmować przykładowo naszkicowanie zadanego rozkładu, podania definicji czy przeprowadzenia prostego rachunku
  • Projekt (10 pkt)
    • kod do napisania i indywidualnej obrony u prowadzącego do 19.06.2019
    • zakres: chi2
    • propozycje zadań zostaną podane w trakcie semestru
  • Obecności
    • Obecność na ćwiczeniach jest obowiązkowa. Dopuszczalne są dwie nieusprawiedliwione nieobecności. Za każdą kolejną odejmowanych jest 5 punktów.

Zaliczenie ćwiczeń:

  • Minimum 25 pkt łącznie

Zaliczenie ćwiczeń jest warunkiem koniecznym dopuszczenia do egzaminu pisemnego (z wykładu).

Zaliczenie wykładu:

  • Egzamin pisemny

składać się będzie z dwóch części: pytań zamkniętych jednokrotnego wyboru (analogicznie jak na egzaminie z TI) oraz pytań otwartych, na przykład:

    • Sformułuj Centralne Twierdzenie Graniczne.
    • Wypisz i przedyskutuj definicje prawdopodobieństwa.
    • Wypisz założenia wersji Centralnego Twierdzenia Granicznego, którą można stosunkowo prosto udowodnić (twierdzenie Lindeberga-Levy'ego). Udowodnij lub spróbuj nakreślić szkic dowodu.
    • Oblicz wartość oczekiwaną rozkładu równomiernego, określonego na odcinku [0, 2], danego wzorami p(x) = 0,5 dla 0\leq x\leq 2 i p(x) = 0 dla x>2 lub x<0.
    • Oblicz wariancję rozkładu równomiernego określonego na odcinku [0, 2], danego wzorami p(x) = 0,5 dla 0\leq x\leq 2 i p(x) = 0 dla x>2 lub x<0
    • Co to jest \chi^2?
    • Wypisz / wyprowadź wzory na wartość oczekiwaną i wariancję rozkładu Poissona.
    • Z rozkładu dwumianowego wylicz prawdopodobieństwo, że wśród czworga dzieci będą co najmniej trzy dziewczynki — zakładając, że prawdopodobieństwa urodzenia dziecka każdej płci są równe.
    • Testy parametryczne i nieparametryczne: wady, zalety, przykłady.
    • Co ma wspólnego poziom istotności testu z poprawką Bonferroniego?
    • Co to jest i jak obliczamy moc testu?
    • Opisz w punktach (zwięźle i konkretnie) procedurę weryfikacji hipotezy o różnicy średnich dwóch grup wyników \{x_{i}, i=1\dots N$\} i \{y_{j}, j=1\dots M\} metodą repróbkowania (resampling).
    • Wyprowadź wzór na średnią N pomiarów x_i o różnych wariancjach \sigma_{i}^2 z metody największej wiarygodności.
    • Dany jest zbiór rozłącznych hipotez H_{i} pokrywających całą przestrzeń zdarzeń \Omega: \sum_{i}H_{i}=\Omega oraz prawdopodobieństwa wyniku eksperymentu W w świetle każdej z hipotez H_{i}, czyli P(W\mid H_{i}). Korzystając z tych oznaczeń, wypisz i wyprowadź twierdzenie Bayesa, czyli wzór na prawdopodobieństwo prawdziwości hipotezy H_{j} w świetle wyników eksperymentu W.


Ocena końcowa z przedmiotu = średnia ocen z ćwiczeń i z wykładu, pod warunkiem zaliczenia ćwiczeń i wykładu.