Model autoregresyjny (AR): Różnice pomiędzy wersjami

Z Brain-wiki
Linia 107: Linia 107:
 
</math>
 
</math>
 
</equation>
 
</equation>
 +
 +
 +
===Wielozmienny model AR===
 +
 +
[[Model autoregresyjny (AR)|Model AR]] opisuje wartość
 +
sygnału w chwili <math>t</math> jako kombinację liniową jego wartości
 +
w chwilach poprzednich (oraz szumu). W przypadku wielowymiarowym
 +
możemy włączyć do tego opisu wartości wszystkich sygnałów
 +
<math>s_i</math>, czyli wektora
 +
<math>\vec{s}(t)</math>. Wielozmienny model AR (MVAR, ''multivariate
 +
autoregressive'' ) można wówczas opisać wzorem:
 +
 +
<math>
 +
\vec{s}(t)=\sum_{i=1}^p A(i) \vec{s}(t-i) + \vec{\epsilon}(t) ,
 +
</math>
 +
 +
gdzie <math>\vec{\epsilon}(t)</math> będzie wektorem
 +
szumów, zaś <math>A(i)</math> będą macierzami współczynników modelu.
 +
Przechodząc do przestrzeni częstości otrzymamy:
 +
 +
<math>
 +
\vec{s}(\omega)=A^{-1}(\omega)\vec{\epsilon}(\omega)=H(\omega)\vec{\epsilon}(\omega),
 +
</math>
 +
 +
gdzie <math>H(\omega)</math> jest macierzą przejścia.  MVAR jest modelem typu "czarna skrzynka", gdzie na wejściu występują szumy, na wyjściu sygnały, a system jest opisany przez macierz przejścia. Zawiera on informacje o własnościach widmowych sygnałów i związkach między nimi.
 +
 +
Na podstawie macierzy <math>H(\omega)</math> można obliczyć macierz
 +
gęstości widmowej zawierającą widma mocy dla pojedynczych kanałów jak
 +
również funkcje wzajemnej gęstości mocy pomiędzy kanałami.  Stosując
 +
tego typu podejście, w którym wszystkie sygnały generowane przez
 +
pewien proces są rozpatrywane jednocześnie, można policzyć z macierzy
 +
spektralnej nie tylko koherencje zwykłe pomiędzy dwoma kanałami, ale
 +
również koherencje wielorakie opisujące związek danego kanału z
 +
pozostałymi i koherencje cząstkowe opisujące bezpośrednie związki
 +
między dwoma kanałami po usunięciu wpływu pozostałych kanałów. W
 +
przypadku gdy pewien kanał 1 będzie wpływał na kanały 2 i 3,
 +
obliczając koherencję zwykłą znajdziemy związek między 2 oraz 3,
 +
chociaż nie są one ze sobą bezpośrednio powiązane, natomiast
 +
koherencja cząstkowa nie wykaże związku między nimi.
 +
 +
Macierz <math>H(\omega)</math> jest niesymetryczna, a jej wyrazy
 +
pozadiagonalne mają sens przyczynowości Grangera, co oznacza, że
 +
uwzględnienie wcześniejszej informacji zawartej w jednym z sygnałów
 +
zmniejsza błąd predykcji drugiego sygnału. Opierając się na tej
 +
własności zdefiniowano Kierunkową Funkcję Przejścia (DTF, ''directed
 +
transfer function'' ) jako znormalizowany element pozadiagonalny
 +
<math>H(\omega)</math>.  DTF opisuje kierunek propagacji i skład
 +
widmowy rozchodzących się sygnałów.
 +
 +
Otrzymamy w ten sposób całościowy opis zmian wszystkich sygnałów
 +
jednocześnie.  Co ciekawe, obliczona na tej podstawie funkcja
 +
charakteryzująca zależności między sygnałami <math>s_i</math> (funkcja
 +
przejścia) nie jest symetryczna, w przeciwieństwie do
 +
np. korelacji. Dzięki temu może służyć wnioskowaniu nie tylko o sile
 +
zależności między poszczególnymi sygnałami składowymi, ale też o
 +
kierunku przepływu informacji między nimi.  W przybliżeniu odpowiada
 +
to informacji, w którym z sygnałów struktury odpowiadające danej
 +
częstości pojawiają się wcześniej.
 +
 +
 
<references/>
 
<references/>

Wersja z 19:38, 8 paź 2015

AS/ Model autoregresyjny (AR)

Model autoregresyjny (rzędu [math]M[/math]) opisuje procesy dyskretne, w których wartość sygnału w danej chwili jest sumą liniowej kombinacji [math]M[/math] wartości poprzednich i nieskorelowanego szumu [math]\epsilon[/math]

[math] s[n] = \sum_{i=1}^M a_i s[n-i] + \epsilon_n [/math]

W każdej realizacji tego samego procesu (dla tych samych współczynników [math]a_i[/math] i wartości początkowych sygnału), [math]\epsilon_t[/math] są niezależnymi liczbami losowymi, więc o wartości [math]s(t)[/math] w konkretnej chwili [math]t[/math] możemy mówić tylko językiem prawdopodobieństwa.

Przykładowe realizacje procesu AR 3-go rzędu ([math]M=3[/math]) o tych samych współczynnikach i wartościach początkowych.

Mimo tego, na podstawie współczynników AR możemy określić wiele ogólnych własności sygnału, np. wartość oczekiwaną [math]\bar{s}[/math] (w praktyce estymowaną przez wartość średnią) i wariancję (jej estymatorem jest kwadratów odchyleń wartości sygnału od wartości oczekiwanej), a nawet widmo mocy. Można również rozważać szersze klasy modeli tego typu, jak np. model MA (ruchomej średniej, ang. moving average), gdzie uśredniamy [math]\epsilon_t[/math] zamiast [math]s(t)[/math], czy proces mieszany ARMA, opisany między innymi w klasycznych pozycjach „Analizie szeregów czasowych”, autorstwa Boxa i Jenkinsa oraz w „Metodach analizy szeregów czasowych” autorstwa Piersola i Bendata.

Najprostszym przykładem jest proces AR pierwszego rzędu (nazywany liniowym procesem Markowa), czyli: [math] s[n] = a s[n-1] + \epsilon_n [/math]

Inaczej [math] s[n] = \epsilon_n + a (\epsilon_{n-1}+a \epsilon_{n-2}+\ldots) = \ldots = \epsilon_n + a\epsilon_{n-1} + a^2\epsilon_{n-2} +\ldots [/math]

Jeśli wartość oczekiwana [math]\epsilon_i[/math] wynosi 0 ([math]E(\epsilon_i)=0[/math]) a wariancja [math]\sigma^2(\epsilon_i)=\sigma_\epsilon^2[/math], to wariancja w punkcie [math]n[/math]

[math]\begin{matrix} \sigma^2_{s[n]} = E\left( (\epsilon_n + a\epsilon_{n-1} + a^2\epsilon_{n-2}+\ldots+a^{n-1}\epsilon_1)^2\right) =\\ = \sigma_\epsilon^2 \left(1+a^2+a^4+\ldots+a^{2n-2} \right) = \left\{ \begin{matrix} \sigma_\epsilon^2 \left(\frac{1-a^{2n}}{1-a^2} \right) & |a|\ne 1\\ n \sigma_\epsilon^2 & |a|=1 \end{matrix} \right. \end{matrix}[/math]

Autokowariancja [math]E(s[n] s[n+\tau])[/math] [math]\begin{matrix} E\left( (\epsilon_n + a\epsilon_{n-1} + a^2\epsilon_{n-2}+\ldots+a^{n-1}\epsilon_1) (\epsilon_{n+\tau} + a\epsilon_{n+\tau-1} +\ldots+a^{n+\tau-1}\epsilon_1)\right) =\\ = \sigma_\epsilon^2 \left(a^\tau+a^{\tau+2}+\ldots+a^{\tau+2(n-1)} \right) = \left\{ \begin{matrix} \sigma_\epsilon^2 a^\tau \left(\frac{1-a^{2n}}{1-a^2} \right) & |a|\ne 1\\ n \sigma_\epsilon^2 & |a|=1 \end{matrix} \right. \end{matrix}[/math]

Dla [math]|a|\ne 1[/math] przy [math]n\rightarrow\infty[/math] [math] \sigma^2_{x[n]} \stackrel{n\rightarrow\infty}{\longrightarrow} \frac{\sigma^2_\epsilon}{1-a^2} \;\;\; ; \;\;\; \sigma_{x[n], x[n+\tau]} \stackrel{n\rightarrow\infty}{\longrightarrow} \frac{\sigma^2_\epsilon a^\tau}{1-a^2} [/math]

Autokowariancja [math] \rho(\tau) = \frac{ \sigma_{x[n], x[n+\tau]} }{ \sigma^2_{x[n]} } \stackrel{n\rightarrow\infty}{\longrightarrow} a^{|\tau|} [/math]

Proces jest asymptotycznie stacjonarny do rzędu 2, czyli wariancja i średnia nie zależą od czasu.

Dla [math]a=1[/math] proces ten obrazuje tzw. błądzenie przypadkowe.

Na podstawie znajomości samego współczynnika [math]a[/math] modelu AR(1) policzyliśmy np. funkcję autokorelacji modelu, co daje już znajomość widma procesu (z tw. Wienera-Chinczyna). Podobnie w procesach wyższych rzędów (1) znajomość współczynników [math]\{a_i\}_{i=1..M}[/math] daje nam dokładną wiedzę o własnościach generowanych przez nie procesów, bez znajomości sygnału [math]s[n][/math], którego wartości mogą różnić się w kolejnych realizacjach ze względu na element stochastyczny — szum [math]\epsilon[/math].

W praktyce analizy sygnału postępujemy odwrotnie — do konkretnej realizacji dopasowujemy model AR. Głównym problemem jest wybór rzędu modelu, estymacja współczynników [math]a_i[/math] najlepiej pasujących do danego sygnału posiada stabilne rozwiązania.

Jeśli dozwolimy, aby sygnał zależał również bezpośrednio od poprzednich wartości szumu [math]\epsilon[/math], dostajemy pełną postać procesu ARMA(L,M) (ang. auto-regressive moving average):

[math] \sum_{i=1}^L b_i\epsilon_{n-i} = \sum_{j=1}^M a_j s[n-j] [/math]


Wielozmienny model AR

Model AR opisuje wartość sygnału w chwili [math]t[/math] jako kombinację liniową jego wartości w chwilach poprzednich (oraz szumu). W przypadku wielowymiarowym możemy włączyć do tego opisu wartości wszystkich sygnałów [math]s_i[/math], czyli wektora [math]\vec{s}(t)[/math]. Wielozmienny model AR (MVAR, multivariate autoregressive ) można wówczas opisać wzorem:

[math] \vec{s}(t)=\sum_{i=1}^p A(i) \vec{s}(t-i) + \vec{\epsilon}(t) , [/math]

gdzie [math]\vec{\epsilon}(t)[/math] będzie wektorem szumów, zaś [math]A(i)[/math] będą macierzami współczynników modelu. Przechodząc do przestrzeni częstości otrzymamy:

[math] \vec{s}(\omega)=A^{-1}(\omega)\vec{\epsilon}(\omega)=H(\omega)\vec{\epsilon}(\omega), [/math]

gdzie [math]H(\omega)[/math] jest macierzą przejścia. MVAR jest modelem typu "czarna skrzynka", gdzie na wejściu występują szumy, na wyjściu sygnały, a system jest opisany przez macierz przejścia. Zawiera on informacje o własnościach widmowych sygnałów i związkach między nimi.

Na podstawie macierzy [math]H(\omega)[/math] można obliczyć macierz gęstości widmowej zawierającą widma mocy dla pojedynczych kanałów jak również funkcje wzajemnej gęstości mocy pomiędzy kanałami. Stosując tego typu podejście, w którym wszystkie sygnały generowane przez pewien proces są rozpatrywane jednocześnie, można policzyć z macierzy spektralnej nie tylko koherencje zwykłe pomiędzy dwoma kanałami, ale również koherencje wielorakie opisujące związek danego kanału z pozostałymi i koherencje cząstkowe opisujące bezpośrednie związki między dwoma kanałami po usunięciu wpływu pozostałych kanałów. W przypadku gdy pewien kanał 1 będzie wpływał na kanały 2 i 3, obliczając koherencję zwykłą znajdziemy związek między 2 oraz 3, chociaż nie są one ze sobą bezpośrednio powiązane, natomiast koherencja cząstkowa nie wykaże związku między nimi.

Macierz [math]H(\omega)[/math] jest niesymetryczna, a jej wyrazy pozadiagonalne mają sens przyczynowości Grangera, co oznacza, że uwzględnienie wcześniejszej informacji zawartej w jednym z sygnałów zmniejsza błąd predykcji drugiego sygnału. Opierając się na tej własności zdefiniowano Kierunkową Funkcję Przejścia (DTF, directed transfer function ) jako znormalizowany element pozadiagonalny [math]H(\omega)[/math]. DTF opisuje kierunek propagacji i skład widmowy rozchodzących się sygnałów.

Otrzymamy w ten sposób całościowy opis zmian wszystkich sygnałów jednocześnie. Co ciekawe, obliczona na tej podstawie funkcja charakteryzująca zależności między sygnałami [math]s_i[/math] (funkcja przejścia) nie jest symetryczna, w przeciwieństwie do np. korelacji. Dzięki temu może służyć wnioskowaniu nie tylko o sile zależności między poszczególnymi sygnałami składowymi, ale też o kierunku przepływu informacji między nimi. W przybliżeniu odpowiada to informacji, w którym z sygnałów struktury odpowiadające danej częstości pojawiają się wcześniej.