WnioskowanieStatystyczne/Effect size: Różnice pomiędzy wersjami
Linia 5: | Linia 5: | ||
to '''ilościowa miara siły zjawiska'''. | to '''ilościowa miara siły zjawiska'''. | ||
− | Głównym, spójnym i eleganckim celem omawiawianych dotychczas metod było przejście z różnorodności mierzonych eksperymentalnie wielkości — milimetry, lata świetlne, tony, stopnie Celsjusza — do uniwersalnej i bezwymiarowej wielkości prawdopodobieństwa <math>p</math>. Jednak ogólnie wskazane jest utrzymywanie kontaktu z rzeczywistością fizyczną, z której pochodzą zarówno pomiary jak i hipotezy. Dla wyjaśnienia rozważmy prosty przykład: ''Na bardzo dużej grupie pacjentów udowadniamy, że nowy lek w | + | Głównym, spójnym i eleganckim celem omawiawianych dotychczas metod było przejście z różnorodności mierzonych eksperymentalnie wielkości — milimetry, lata świetlne, tony, stopnie Celsjusza — do uniwersalnej i bezwymiarowej wielkości prawdopodobieństwa <math>p</math>. Jednak ogólnie wskazane jest utrzymywanie kontaktu z rzeczywistością fizyczną, z której pochodzą zarówno pomiary jak i hipotezy. Dla wyjaśnienia rozważmy prosty przykład: ''Na bardzo dużej grupie pacjentów udowadniamy, że nowy lek w stanach zapalnych zmniejsza temperaturę silniej niż aspiryna. Efekt jest istotny statystycznie na poziomie 1%.'' Czy to wszystko? |
− | Może się okazać, że (istotna) różnica między średnim spadkiem temperatury w grupach przyjmujących aspirynę i placebo wyniosła 0,05 stopnia Celsjusza. W tym przypadku intuicja podpowiada, że zmiana — pomimo, że istotna statystycznie — jest bardzo niewielka, i na pewno inaczej podchodzilibyśmy do leku, który daje rtóżnicę średnich np. 2 stopni Celsjusza. W ogólnym przypadku taką intuicją nie dysponujemy, stąd rozmaitość różnych i niezbyt spójnych miar (według [https://en.wikipedia.org/wiki/Effect_size Wikipedii] jest ich kiladziesiąt), które mają ten efekt kwantyfikować w sposób możliwie uniwersalny. Przyjrzyjmy się krytycznie niektórym przykładom pamiętając, że raportowanie tego efektu jest coraz częściej wymagane w publikacjach wyników badawczych. | + | Może się okazać, że (istotna) różnica między średnim spadkiem temperatury w grupach przyjmujących aspirynę i placebo wyniosła 0,05 stopnia Celsjusza. W tym przypadku intuicja podpowiada, że zmiana — pomimo, że istotna statystycznie — jest bardzo niewielka, i na pewno inaczej podchodzilibyśmy do leku, który daje rtóżnicę średnich np. 2 stopni Celsjusza przy tym samym <math>p</math>. W ogólnym przypadku taką intuicją nie dysponujemy, stąd rozmaitość różnych i niezbyt spójnych miar (według [https://en.wikipedia.org/wiki/Effect_size Wikipedii] jest ich kiladziesiąt), które mają ten efekt kwantyfikować w sposób możliwie uniwersalny. Przyjrzyjmy się krytycznie niektórym przykładom pamiętając, że raportowanie tego efektu jest coraz częściej wymagane w publikacjach wyników badawczych. |
Wersja z 15:15, 27 kwi 2023
Wnioskowanie_Statystyczne_-_wykład
Wielkość efektu (Effect size)
to ilościowa miara siły zjawiska.
Głównym, spójnym i eleganckim celem omawiawianych dotychczas metod było przejście z różnorodności mierzonych eksperymentalnie wielkości — milimetry, lata świetlne, tony, stopnie Celsjusza — do uniwersalnej i bezwymiarowej wielkości prawdopodobieństwa [math]p[/math]. Jednak ogólnie wskazane jest utrzymywanie kontaktu z rzeczywistością fizyczną, z której pochodzą zarówno pomiary jak i hipotezy. Dla wyjaśnienia rozważmy prosty przykład: Na bardzo dużej grupie pacjentów udowadniamy, że nowy lek w stanach zapalnych zmniejsza temperaturę silniej niż aspiryna. Efekt jest istotny statystycznie na poziomie 1%. Czy to wszystko? Może się okazać, że (istotna) różnica między średnim spadkiem temperatury w grupach przyjmujących aspirynę i placebo wyniosła 0,05 stopnia Celsjusza. W tym przypadku intuicja podpowiada, że zmiana — pomimo, że istotna statystycznie — jest bardzo niewielka, i na pewno inaczej podchodzilibyśmy do leku, który daje rtóżnicę średnich np. 2 stopni Celsjusza przy tym samym [math]p[/math]. W ogólnym przypadku taką intuicją nie dysponujemy, stąd rozmaitość różnych i niezbyt spójnych miar (według Wikipedii jest ich kiladziesiąt), które mają ten efekt kwantyfikować w sposób możliwie uniwersalny. Przyjrzyjmy się krytycznie niektórym przykładom pamiętając, że raportowanie tego efektu jest coraz częściej wymagane w publikacjach wyników badawczych.