Analiza sygnałów - ćwiczenia: Różnice pomiędzy wersjami

Z Brain-wiki
m
m
 
(Nie pokazano 43 wersji utworzonych przez 2 użytkowników)
Linia 1: Linia 1:
 
[[Category:Przedmioty specjalizacyjne]]
 
[[Category:Przedmioty specjalizacyjne]]
 +
 +
 +
 +
<!--
 +
Notatnik z kolokwium 25.11.2024: https://colab.research.google.com/drive/1y-eGVPmF8YegZhHZ7HEfahEs_11_IUj8?usp=sharing
 +
-->
 +
 
<!--
 
<!--
 
#[[Systemy liniowe niezmiennicze w czasie | Systemy liniowe niezmiennicze w czasie]]
 
#[[Systemy liniowe niezmiennicze w czasie | Systemy liniowe niezmiennicze w czasie]]
Linia 10: Linia 17:
 
[[ZasadyZaliczenia|Zasady zaliczenia ćwiczeń]]
 
[[ZasadyZaliczenia|Zasady zaliczenia ćwiczeń]]
  
#[[Ćwiczenia 1|Sygnały]] [https://drive.google.com/file/d/0B7k6Z_ViZid5dXdKdVExNS1XZlE/view?usp=sharing notebook1]<!-- -- wstęp, generacja sygnałów testowych, aliasing, przypomnienie Pythona, wprowadzenie Svaroga; jak wczytać do Svaroga z Pythona i w drugą stronę -->
+
Zbiór zadań z pythona, które mają na celu pomoc w opanowaniu podstaw Pythona, ze szczególnym naciskiem na rozwinięcie kompetencji potrzebnych w analizie sygnałów, takich jak: pogłębiona znajomość biblioteki numpy, praca z plikami multipleksowanymi, wykorzystanie Pythona jako narzędzia do analizy danych. https://gitlab.com/pbieganski/podstawy-pythona
#[[Ćwiczenia 1.1|Sygnały jako wektory]] [https://drive.google.com/open?id=0B7k6Z_ViZid5WlU2WHVlLVZhMDg notebook2]
+
 
#[[Ćwiczenia 2|Transformata Fouriera]]  
+
 
#[[Ćwiczenia 2_2|Transformata Fouriera cd]] <!-- piszemy w Pythonie, porównujemy ze Svarogiem -->
+
[[File:Okladka.jpeg|thumb|upright=0.25| Dostępna w bibliotece]] W bibliotece Wydziału Fizyki dostępne są książki: Practical biomedical signal analysis using Matlab / K. J. Blinowska J. Żygierewicz. (katalog: https://chamo.buw.uw.edu.pl:8443/lib/item?id=chamo:895791&fromLocationLink=false&theme=system)
#[[Ćwiczenia 3|Okienkowanie sygnału i transformata Fouriera]]
+
 
#[[Nieparametryczne widmo mocy |Estymacja widma mocy w oparciu o transformatę Fouriera]] <!-- widmo średniej vs. średnie widmo -->
+
Dla grupy o 10:15 link do podłączania się: Analiza Sygnałów
#[[Ćwiczenia 4|Funkcja autokorelacji]]
+
https://meet.google.com/inx-rxqe-fku
#[[Ćwiczenia 5|Procesy AR]] <!-- AR w Pyhonie + DTF w Svarogu (MK) -->
+
 
#[[Ćwiczenia 6|Filtry I]] <!-- w Pythonie i w Svarogu -->
+
# [https://drive.google.com/file/d/1Cr8CCPoh_G-iAq8x2Bm0YxwAcsrNwqir/view?usp=sharing Sygnały AS_1.ipynb] [https://drive.google.com/file/d/1J_7pyTO00r-OyhyrMd1v_dAoiIU0C-3k/view?usp=sharing notebook wypełniony]
#[[Ćwiczenia 7|Filtry II]] <!-- oglądanie charakterystyk filtrów, ogładanie widma sygnałów przefiltrowanych, efektywność filtrów, przesuwanie fazy -->
+
# [https://colab.research.google.com/drive/1y81wGZHwpUf4J6IIApPdqahgUN9Bad0p?usp=sharing Transformata Fouriera 1 (FFT) AS2_Transformata_fouriera.ipynb]
#[[AS cwiczeniaTF|Metody czas-częstość]] <!-- STFT i falki -->
+
#[https://colab.research.google.com/drive/18nU5rWKinO697M3Pgnp6luiC-NcBYD-9?usp=sharing Transformata Fouriera 2 AS3_Transformata_fouriera_2.ipynb]
#[[AS cwiczenia ICA| ICA]] <!-- montaże, ICA -->
+
#[https://colab.research.google.com/drive/1b6djG2_uE_yc0-QEyD1Yl-dd8Ezelf2m?usp=sharing Okienkowanie AS4_okienkowanie.ipynb]
#[[AS cwiczenia DTF| DTF]] <!-- wielokanałowy AR , DTF -->
+
#[https://colab.research.google.com/drive/1Lr-fkC4oFl2Tf4Y2w2w27bARpvwWRSmG?usp=sharing Estymacja widma mocy AS5_Widmo_mocy.ipynb ]  
 +
# kontynuacja notebook AS5
 +
#[https://colab.research.google.com/drive/1mKjXYKICL1vp5z0MpWrfM8JuXCDlc_HK?usp=sharing Model AR AS6_1_ProcesyAR.ipynb]
 +
#[https://colab.research.google.com/drive/1NRzWBr5j5YzwfaZDwJC5yaPEVgi6rc6U?usp=sharing Estymacja parametryczna widma procesu AS6_2_Widmo_Procesu_AR.ipynb]
 +
#[https://colab.research.google.com/drive/1e8_SIPFqAJA7WGsPiWudplubHtrgkSq0?usp=sharing Filtry notebook7]  
 +
# kontynuacja notebook7
 +
#[https://drive.google.com/file/d/1Ey1yYgVMbu3n9djb2LzPZ4dT03gYFcAw/view?usp=sharing Metody czas-częstość STFT i falki: notebook8]     <br>[https://drive.google.com/open?id=0BzwQ_Lscn8yDdUlLVXp1XzF0elE notebook 10] <br>lektura uzupełniająca: [https://www.math.ucdavis.edu/~saito/data/sonar/boashash1.pdf  Estimating and Interpreting The Instantaneous Frequency of a Signal-Part 1: Fundamentals ]
 +
 
 +
== Materiały dodatkowe: ==
 +
 
 +
[https://www.youtube.com/playlist?list=PLXJDR4jmaWX795PLOwLt5pR59H2BrZAsK playlista na YouTube z filmami nagranymi w czasie zdalnych ćwiczeń w roku 2020/21]
 +
 
 +
<!-- #[[AS cwiczenia ICA| ICA]] montaże, ICA -->
 +
<!-- #[[AS cwiczenia DTF| DTF]]wielokanałowy AR , DTF -->
  
 
<!--#[[AS cwiczeniaMP|Matching pursuit]] <!-- MP w Svarogu, zabawa parametrami dekompozycji, zabawa filtrowaniem map w Svarogu, postprocessing w Pythonie  
 
<!--#[[AS cwiczeniaMP|Matching pursuit]] <!-- MP w Svarogu, zabawa parametrami dekompozycji, zabawa filtrowaniem map w Svarogu, postprocessing w Pythonie  
Linia 29: Linia 49:
 
#[[Ćwiczenia UNIFIKACJA]] <!-- ostatnie ćwiczenia na ktrych porównujemy na tych samych sygnałach rzeczywistych i symulowanych działanie różnych metod -- MMP vs DTF vs ICA, STFT vs WT vs MP itp, potrzebne fajne przykłady -->
 
#[[Ćwiczenia UNIFIKACJA]] <!-- ostatnie ćwiczenia na ktrych porównujemy na tych samych sygnałach rzeczywistych i symulowanych działanie różnych metod -- MMP vs DTF vs ICA, STFT vs WT vs MP itp, potrzebne fajne przykłady -->
  
autorzy: Jarosław Żygierewicz, Maciej Kamiński, Magdalena Zieleniewska
+
Przed kolokwium 1
 +
# [[kolokwia2014_2015_kol1|Zagadnienia przygotowawcze do 1 kolokwium]]
 +
# [https://drive.google.com/open?id=1RKIHgfuqtBvg65PUpIuQI3rYeyvdIXMi zadania powtórzeniowe do kolokwium  1]
 +
 
 +
autorzy: Jarosław Żygierewicz, Maciej Kamiński, Magdalena Zieleniewska, wersja z notebookami Jan Mąka i Piotr Biegański
  
 
<!--
 
<!--

Aktualna wersja na dzień 11:24, 26 lis 2024




Zasady zaliczenia ćwiczeń

Zbiór zadań z pythona, które mają na celu pomoc w opanowaniu podstaw Pythona, ze szczególnym naciskiem na rozwinięcie kompetencji potrzebnych w analizie sygnałów, takich jak: pogłębiona znajomość biblioteki numpy, praca z plikami multipleksowanymi, wykorzystanie Pythona jako narzędzia do analizy danych. https://gitlab.com/pbieganski/podstawy-pythona


Dostępna w bibliotece

W bibliotece Wydziału Fizyki dostępne są książki: Practical biomedical signal analysis using Matlab / K. J. Blinowska J. Żygierewicz. (katalog: https://chamo.buw.uw.edu.pl:8443/lib/item?id=chamo:895791&fromLocationLink=false&theme=system)

Dla grupy o 10:15 link do podłączania się: Analiza Sygnałów https://meet.google.com/inx-rxqe-fku

  1. Sygnały AS_1.ipynb notebook wypełniony
  2. Transformata Fouriera 1 (FFT) AS2_Transformata_fouriera.ipynb
  3. Transformata Fouriera 2 AS3_Transformata_fouriera_2.ipynb
  4. Okienkowanie AS4_okienkowanie.ipynb
  5. Estymacja widma mocy AS5_Widmo_mocy.ipynb
  6. kontynuacja notebook AS5
  7. Model AR AS6_1_ProcesyAR.ipynb
  8. Estymacja parametryczna widma procesu AS6_2_Widmo_Procesu_AR.ipynb
  9. Filtry notebook7
  10. kontynuacja notebook7
  11. Metody czas-częstość STFT i falki: notebook8
    notebook 10
    lektura uzupełniająca: Estimating and Interpreting The Instantaneous Frequency of a Signal-Part 1: Fundamentals

Materiały dodatkowe:

playlista na YouTube z filmami nagranymi w czasie zdalnych ćwiczeń w roku 2020/21


Przed kolokwium 1

  1. Zagadnienia przygotowawcze do 1 kolokwium
  2. zadania powtórzeniowe do kolokwium 1

autorzy: Jarosław Żygierewicz, Maciej Kamiński, Magdalena Zieleniewska, wersja z notebookami Jan Mąka i Piotr Biegański