Wstep: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 1: Linia 1:
 
Sygnały zapisujemy, przetwarzamy i analizujemy w postaci ciągów liczb. Przejście od sygnału ciągłego do cyfrowego odbywa się przez proces próbkowania, czyli zapisywania kolejnych amplitud sygnału w ustalonych, stałych odstępach czasu, omawiany wcześniej na [[TI/Cyfrowy_świat|TIiK]].  
 
Sygnały zapisujemy, przetwarzamy i analizujemy w postaci ciągów liczb. Przejście od sygnału ciągłego do cyfrowego odbywa się przez proces próbkowania, czyli zapisywania kolejnych amplitud sygnału w ustalonych, stałych odstępach czasu, omawiany wcześniej na [[TI/Cyfrowy_świat|TIiK]].  
  
[[Plik:AD.png|bezramki]]
+
[[Plik:AD.png|150px|bezramki]]
  
 
Ciągły sygnał z górnego rysunku, po próbkowaniu w punktach symbolizowanych czarnymi kropkami na rysunku dolnym, na dysku zostaje zapisany jako ciąg liczb:
 
Ciągły sygnał z górnego rysunku, po próbkowaniu w punktach symbolizowanych czarnymi kropkami na rysunku dolnym, na dysku zostaje zapisany jako ciąg liczb:
Linia 7: Linia 7:
 
  102, 195, 80, 16, 147, 178
 
  102, 195, 80, 16, 147, 178
  
Żeby odtworzyć fizyczne własności sygnału, czyli narysować zapisane wartości próbek (czarne kropki) w odpowiedniej skali, musimy znać częstość próbkowania i stałą kalibracji.
+
Żeby odtworzyć fizyczne własności sygnału, czyli narysować zapisane wartości próbek (czarne kropki) w odpowiedniej skali, musimy znać ''częstość próbkowania'' i ''stałą kalibracji''.
  
 
Wyrażana w hercach (Hz) częstość próbkowania <math>f_p</math> to liczba próbek na sekundę. Jest ona odwrotnością odstępu w czasie między kolejnymi próbkami (<math>\Delta t</math>):
 
Wyrażana w hercach (Hz) częstość próbkowania <math>f_p</math> to liczba próbek na sekundę. Jest ona odwrotnością odstępu w czasie między kolejnymi próbkami (<math>\Delta t</math>):
Linia 15: Linia 15:
  
 
Stała kalibracji to współczynnik, przez który mnożymy zapisane liczby, żeby otrzymać wartości w jednostkach fizycznych, na przykład mikrowoltach.
 
Stała kalibracji to współczynnik, przez który mnożymy zapisane liczby, żeby otrzymać wartości w jednostkach fizycznych, na przykład mikrowoltach.
 +
 +
Oczywiście musimy też wiedzieć, w jakim formacie zapisano na dysku liczby (to omawialiśmy na wykładzie o [[TI/Zera_i_jedynki binarnych reprezentacjach liczb]], oraz, w przypadku sygnałów wielozmiennych o jednolitym próbkowaniu, znać liczbę kanałów. Taka dodatkowa informacja (metainformacja) jest konieczna do poprawnego wyświetlenia danych z pliku.
  
 
===Aliasing===
 
===Aliasing===
Linia 22: Linia 24:
 
</div>  
 
</div>  
 
Jeśli częstość próbkowania nie byłą wystarczająco wysoka, nie tylko stracimy informację o zmianach amplitudy sygnału "pomiędzy próbkami", ale dojdzie też do zafałszowania sygnału w niższych częstościach, które z pozoru nie powinny być zaburzone. Efekt ten jest omówiony w rozdziale [[Aliasing]].
 
Jeśli częstość próbkowania nie byłą wystarczająco wysoka, nie tylko stracimy informację o zmianach amplitudy sygnału "pomiędzy próbkami", ale dojdzie też do zafałszowania sygnału w niższych częstościach, które z pozoru nie powinny być zaburzone. Efekt ten jest omówiony w rozdziale [[Aliasing]].
[[Plik:Nyquist1.png|900px|bezramki]]
+
 
 +
[[Plik:Nyquist1.png|600px|bezramki]]
  
  

Wersja z 19:21, 25 lip 2024

Sygnały zapisujemy, przetwarzamy i analizujemy w postaci ciągów liczb. Przejście od sygnału ciągłego do cyfrowego odbywa się przez proces próbkowania, czyli zapisywania kolejnych amplitud sygnału w ustalonych, stałych odstępach czasu, omawiany wcześniej na TIiK.

AD.png

Ciągły sygnał z górnego rysunku, po próbkowaniu w punktach symbolizowanych czarnymi kropkami na rysunku dolnym, na dysku zostaje zapisany jako ciąg liczb:

102, 195, 80, 16, 147, 178

Żeby odtworzyć fizyczne własności sygnału, czyli narysować zapisane wartości próbek (czarne kropki) w odpowiedniej skali, musimy znać częstość próbkowania i stałą kalibracji.

Wyrażana w hercach (Hz) częstość próbkowania [math]f_p[/math] to liczba próbek na sekundę. Jest ona odwrotnością odstępu w czasie między kolejnymi próbkami ([math]\Delta t[/math]):

[math]f_p = \dfrac{1}{\Delta t}[/math]

Stała kalibracji to współczynnik, przez który mnożymy zapisane liczby, żeby otrzymać wartości w jednostkach fizycznych, na przykład mikrowoltach.

Oczywiście musimy też wiedzieć, w jakim formacie zapisano na dysku liczby (to omawialiśmy na wykładzie o TI/Zera_i_jedynki binarnych reprezentacjach liczb, oraz, w przypadku sygnałów wielozmiennych o jednolitym próbkowaniu, znać liczbę kanałów. Taka dodatkowa informacja (metainformacja) jest konieczna do poprawnego wyświetlenia danych z pliku.

Aliasing

Poza znajomością zależności między zapisanymi liczbami a jednostkami fizycznymi w procesie próbkowania kluczową rolę odgrywa twierdzenie o próbkowaniu (inaczej twierdzenie Nyquista-Shannona, czasem w skrócie twierdzenie Nyquista). Mówi ono, że sygnał ciągły możemy odtworzyć za zapisanych próbek, jeśli częstość próbkowania [math]f_p[/math] była wyższa niż dwukrotność najwyższej z występujących w sygnale częstości [math]f_{max}[/math], nazywana częstością Nyquista [math]f_N[/math]:

[math] f_p = \dfrac{1}{\Delta t} \gt 2* f_{max} = f_N[/math]

Jeśli częstość próbkowania nie byłą wystarczająco wysoka, nie tylko stracimy informację o zmianach amplitudy sygnału "pomiędzy próbkami", ale dojdzie też do zafałszowania sygnału w niższych częstościach, które z pozoru nie powinny być zaburzone. Efekt ten jest omówiony w rozdziale Aliasing.

Nyquist1.png



Celem pierwszego wykładu jest wprowadzenie pojęć, potrzebnych na pierwszych ćwiczeniach:

  • częstość próbkowania
  • częstość Nyquista
  • aliasing
  • sygnał dyskretny jako wektor
  • szereg Fouriera
  • transformata Fouriera