Ćwiczenia z elektrodynamiki dla neuroinformatyków: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 5: Linia 5:
 
=Elektrodynamika dla neuroinformatyków - ćwiczenia=
 
=Elektrodynamika dla neuroinformatyków - ćwiczenia=
  
<!--== Ogłoszenia bieżące 2018/19==
+
== Ogłoszenia bieżące 2019/20==
Egzamin pisemny poprawkowy odbędzie się w dniu <b>19.02.2019</b> w godzinach <b>10:00 - 14:00</b> w sali <b>2.12</b>.<br>
+
 
 +
Wyniki kolokwium 1:<br>
 +
[[Grafika:Kolokwium1.jpg|450px]]<br>
 +
 
 +
<br>
 +
Kolokwium 2 odbędzie się w dniu 20.01.2020 w godz. 9-13 w sali 2.24 (Pasteura 5).
 +
 
 +
<!--Egzamin pisemny poprawkowy odbędzie się w dniu <b>19.02.2019</b> w godzinach <b>10:00 - 14:00</b> w sali <b>2.12</b>.<br>
 
<br>
 
<br>
 
Egzamin ustny poprawkowy odbędzie się w dniu <b>20.02.2019</b> w godzinach <b>10:00 - 14:00</b> w sali <b>4.59</b>.<br>
 
Egzamin ustny poprawkowy odbędzie się w dniu <b>20.02.2019</b> w godzinach <b>10:00 - 14:00</b> w sali <b>4.59</b>.<br>
Linia 27: Linia 34:
 
[[Grafika:egz3.jpg|450px]]<br>
 
[[Grafika:egz3.jpg|450px]]<br>
 
<br>
 
<br>
 
  
  

Wersja z 15:55, 20 lis 2019



Elektrodynamika dla neuroinformatyków - ćwiczenia

Ogłoszenia bieżące 2019/20

Wyniki kolokwium 1:
Kolokwium1.jpg


Kolokwium 2 odbędzie się w dniu 20.01.2020 w godz. 9-13 w sali 2.24 (Pasteura 5).


Termin zajęć

Wykłady odbywają się raz w tygodniu, w piątki, w godzinach 09:15 - 11:00. Sala 2.08, ul. Pasteura 5.
Ćwiczenia odbywają się raz w tygodniu, w piątki, w godzinach 11:15 - 13:00. Sala 1.37, ul. Pasteura 5.

Kontakt z prowadzącym

Wykłady prowadzi dr hab. Maciej Kamiński, pokój 4.69, ul. Pasteura 5.
Ćwiczenia prowadzi prof. dr hab. Marek Trippenbach, pokój 5.33, ul. Pasteura 5.


Preferowany sposób kontaktu - e-mail: Marek.Trippenbach@fuw.edu.pl

Warunki zaliczenia

Ćwiczenia zostaną zaliczone osobom, które spełnią dwa niezwykle proste warunki:

  • Posiadanie maksymalnie dwóch nieusprawiedliwionych nieobecności na ćwiczeniach,
  • Posiadanie sumy punktów z dwóch kolokwiów nie mniejszej niż połowa punktów możliwych do zdobycia.


  • Osoby posiadające zaliczenie ćwiczeń dopuszczone zostaną do egzaminu pisemnego, a następnie ustnego (niezależnie od wyniku z części pisemnej).
  • Osoby nie mające tego szczęścia, muszą podejść do egzaminu pisemnego i uzyskać z niego przynajmniej połowę możliwych do zdobycia punktów. Jeśli tak się stanie, to zostaną one dopuszczone do części ustnej egzaminu, w przeciwnym wypadku pozostaje sesja poprawkowa.


  • Kilku osobom posiadającym nadzwyczajnie dobre wyniki z kolokwiów oraz egzaminu pisemnego mogą zostać zaproponowane oceny końcowe. Możliwe jest oczywiście wzgardzenie takim podarkiem i próba podwyższenia zaproponowanej oceny poprzez egzamin ustny, co gorąco poleca prowadzący. Niestety, jak to w życiu bywa, może się również zdarzyć obniżenie oceny, a w skrajnych wypadkach skierowanie na egzamin w sesji poprawkowej.

Zadania ćwiczeniowe

Seria 0
Seria 1
Seria 2
Seria 3

Wyniki kolokwiów i egzaminu

Zagadnienia na egzamin ustny

Poniżej znajduje się lista zagadnień na egzamin ustny. Proszę zwrócić uwagę, że NIE jest to zbiór pytań, z którego będzie następowało losowanie.

  • Równania Maxwella w próżni. Postać różniczkowa i całkowa w przypadku stacjonarnym. Zasada zachowania ładunku elektrycznego.
  • Opis potencjału pola elektrycznego [math]\vec{E}[/math] oraz magnetycznego [math]\vec{H}[/math]. Równania na potencjały.
  • Cechowanie potencjałów. Wybór punktu odniesienia.
  • Rozwinięcie multipolowe potencjału elektrycznego i magnetycznego. Moment monopolowy, dipolowy, kwadrupolowy. Zależność od wyboru układu odniesienia.
  • Równania Maxwella w materii. Równania materiałowe, podstawowe zależności dla typowych substancji. Opis potencjalny w jednorodnych, izotropowych dielektrykach.
  • Warunki graniczne dla pola elektrycznego i magnetycznego na styku ośrodków. Warunki zszycia dla potencjału elektrycznego.
  • Równania Poissona i Laplace'a. Zagadnienie Dirichleta i Neumanna (opis założeń i warunków brzegowych). Funkcja Greena - rozwiązanie dla całej przestrzeni. Rozwiązanie równania ΔF = 0. Metoda separacji zmiennych.
  • Zasada zachowania energii dla pola elektromagnetycznego. Wektor Poyntinga, gęstość energii w próżni i w materii. Energia pola elektrostatycznego i magnetostatycznego.
  • Prądy stałe. Analogia z elektrostatyką dielektryków.
  • Własności fali elektromagnetycznej (płaskiej, monochromatycznej) w ośrodku jednorodnym przezroczystym bez źródeł - kierunki [math]\vec{E}[/math] oraz [math]\vec{B}[/math], zależności między T, λ, ω, k, u. Polaryzacja liniowa, kołowa, eliptyczna. Natężenie fali, wektor Poyntinga.
  • Fala elektromagnetyczna w izotropowym przewodniku - własności ogólne, różnice względem fali w dielektryku.
  • Zagadnienie Cauchy-Dirichleta. Opóźniona funkcja Greena.
  • Potencjały opóźnione [math]V(\vec{r} , t)[/math], [math]\vec{A}(\vec{r} , t)[/math]. Równania Jefimienki - istota równań, różnice względem przypadku stacjonarnego pól [math]\vec{E}[/math] i [math]\vec{B}[/math].
  • Potencjały Liénarda-Wiecherta — postać potencjałów, istota.
  • Elementy składowe pola [math]\vec{E}[/math] ładunku poruszającego się. Rozkład kątowy promieniowania poruszającego się ładunku punktowego.
  • Pojęcie dipola prądowego, źródeł prądowych w przewodniku objętościowym. Prądy pierwotne i objętościowe (wtórne). Rodzaje źródeł prądowych w opisie zjawisk elektrycznych w układzie nerwowym.
  • Potencjał warstwy dipolowej. Zastosowanie zasady kąta bryłowego do opisu potencjałów od komórek nerwowych.
  • Różnice między EEG i MEG.
  • Problem odwrotny w EEG i MEG — metodologia, jednoznaczność rozwiązania.
  • Pojęcie „lead field” i praktyczne zastosowanie tego pojęcia do rozwiązania problemu wprost oraz problemu odwrotnego.