WnioskowanieStatystyczne/Interpretacja współczynnika korelacji: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 42: Linia 42:
  
 
<math>
 
<math>
\rho_{x, y}= \frac{\sigma_{x, y}}{\sigma_x \sigma_y}=
+
r_{x, y}= \frac{\sigma_{x, y}}{\sigma_x \sigma_y}=
 
\frac{E\left( \left(x-\mu_{x})(y-\mu_{y}\right)\right)}
 
\frac{E\left( \left(x-\mu_{x})(y-\mu_{y}\right)\right)}
 
{\sqrt{E\left( (x-\mu_{x})^2\right) E\left( (y-\mu_{y})^2\right)}},
 
{\sqrt{E\left( (x-\mu_{x})^2\right) E\left( (y-\mu_{y})^2\right)}},
Linia 50: Linia 50:
  
 
<math>
 
<math>
\rho ^{2}=\frac{\left( \underset{i=1}{\overset{N}{\sum }}(x_{i}-
+
r^{2}=\frac{\left( \underset{i=1}{\overset{N}{\sum }}(x_{i}-
 
\overline{x})(y_{i}-\overline{y})\right) ^{2}}{\underset{i=1}{\overset{N}{
 
\overline{x})(y_{i}-\overline{y})\right) ^{2}}{\underset{i=1}{\overset{N}{
 
\sum }}(x_{i}-\overline{x})^{2}\underset{i=1}{\overset{N}{\sum }}(y_{i}-
 
\sum }}(x_{i}-\overline{x})^{2}\underset{i=1}{\overset{N}{\sum }}(y_{i}-
Linia 84: Linia 84:
 
)(y_{i}-\overline{y})\right) ^{2}}{\underset{i=1}{\overset{N}{\sum }}(x_{i}-
 
)(y_{i}-\overline{y})\right) ^{2}}{\underset{i=1}{\overset{N}{\sum }}(x_{i}-
 
\overline{x})^{2}}\frac{\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y}
 
\overline{x})^{2}}\frac{\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y}
)^{2}}{\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2}}=\rho ^{2}
+
)^{2}}{\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2}}=r^{2}
 
\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2}  
 
\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2}  
 
</math>
 
</math>
Linia 91: Linia 91:
  
 
<math>
 
<math>
{ \rho ^{2}=\frac{\underset{i=1}{\overset{N}{\sum }}(y_{i}^{p}-
+
{r^{2}=\frac{\underset{i=1}{\overset{N}{\sum }}(y_{i}^{p}-
 
\overline{y})^{2}}{\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2}
 
\overline{y})^{2}}{\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2}
 
}\ }
 
}\ }

Wersja z 06:41, 20 maj 2022

Wnioskowanie_Statystyczne_-_wykład


Interpretacja współczynnika korelacji liniowej

Rozważmy wariancję zmiennej [math]y[/math] z poprzedniego rozdziału. Niech [math]y_{i}^{p}=a+bx_{i}[/math]

Wsp kor war.png


[math] \underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2}= \underset{i=1}{\overset{N}{\sum }}(y_{i}-y_{i}^{p}+y_{i}^{p}-\overline{y} )^{2}= [/math] [math] \underset{i=1}{\overset{N}{\sum }}(y_{i}-y_{i}^{p})^{2}+\underset{i=1}{ \overset{N}{\sum }}(y_{i}^{p}-\overline{y})^{2}+2\underset{i=1}{\overset{N}{ \sum }}(y_{i}-y_{i}^{p})(y_{i}^{p}-\overline{y}) [/math]

Całkowitą wariancię zmiennej [math]y[/math] podzieliliśmy na dwa człony: wariancję estymaty [math]y_{i}^{p}[/math] wokół wartości średniej [math]\overline{y}[/math] i wariancję obserwowanych [math]y_{i}[/math] wokół estymaty [math]y_{i}^{p}[/math] (trzeci człon znika).

Współczynnik korelacji liniowej (Pearsona)

przypominamy wyprowadzone w poprzednim rozdziale zależności:


[math] b=\frac{\underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x})(y_{i}- \overline{y})}{\underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x})^{2}}, \qquad a=\overline{y}-b\overline{x} [/math]

oraz estymator współczynnika korelacji liniowej

[math] r_{x, y}= \frac{\sigma_{x, y}}{\sigma_x \sigma_y}= \frac{E\left( \left(x-\mu_{x})(y-\mu_{y}\right)\right)} {\sqrt{E\left( (x-\mu_{x})^2\right) E\left( (y-\mu_{y})^2\right)}}, [/math]

jego kwadrat estymujemy jako

[math] r^{2}=\frac{\left( \underset{i=1}{\overset{N}{\sum }}(x_{i}- \overline{x})(y_{i}-\overline{y})\right) ^{2}}{\underset{i=1}{\overset{N}{ \sum }}(x_{i}-\overline{x})^{2}\underset{i=1}{\overset{N}{\sum }}(y_{i}- \overline{y})^{2}} [/math]


Ponieważ [math] \forall_i (y_i - \overline{y}) = b (x_i - \overline{x} ) [/math],


[math] \underset{i=1}{\overset{N}{\sum }}(y_{i}^{p}-\overline{y})^{2}= [/math]

[math]= b^{2} \underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x})^{2}= [/math]

[math] =\frac{\left( \underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x})(y_{i}-\overline{y} )\right) ^{2}}{\left( \underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x} )^{2}\right) ^{2}}\underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x} )^{2}= [/math]

[math] =\frac{\left( \underset{i=1}{\overset{N}{\sum }}(x_{i}-\overline{x} )(y_{i}-\overline{y})\right) ^{2}}{\underset{i=1}{\overset{N}{\sum }}(x_{i}- \overline{x})^{2}}\frac{\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y} )^{2}}{\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2}}=r^{2} \underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2} [/math]

czyli

[math] {r^{2}=\frac{\underset{i=1}{\overset{N}{\sum }}(y_{i}^{p}- \overline{y})^{2}}{\underset{i=1}{\overset{N}{\sum }}(y_{i}-\overline{y})^{2} }\ } [/math]


przykłady interpretacji podaje też artykuł z Wikipedii


Przykładowe wartości współczynnika korelacji dla 300 par [math](x, y)[/math] o różnych stopniach współzależności.