WnioskowanieStatystyczne/CLT: Różnice pomiędzy wersjami
(→Dowód) |
|||
Linia 136: | Linia 136: | ||
</equation> | </equation> | ||
− | + | ==Dowód twierdzenia Lindeberga—Lévy'ego== | |
rozważamy zmienną losową <math>x_i</math> pochodzącą z rozkładu o wartości oczekiwanej <math>\mu</math> i wariancji <math>\sigma^2</math>. | rozważamy zmienną losową <math>x_i</math> pochodzącą z rozkładu o wartości oczekiwanej <math>\mu</math> i wariancji <math>\sigma^2</math>. |
Wersja z 13:19, 17 mar 2024
Wnioskowanie_Statystyczne_-_wykład
Spis treści
Rozkład Gaussa
Rozkład Gaussa (zwany też rozkładem normalnym lub krzywą dzwonową) zależy od parametrów [math]\mu[/math] i [math]\sigma[/math]. Jego gęstość prawdopodobieństwa określona jest wzorem:
[math] p(x)=N(\mu, \sigma)= \frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-(x-\mu )^{2}}{2\sigma ^{2}}}. [/math]
Parametry te są tak dobrane, że wartość oczekiwana wynosi [math]\mu[/math], a wariancja [math]\sigma^2[/math].
Rozkład Gaussa dla zerowej wartości oczekiwanej i jednostkowej wariancji ([math]\mu=0, \sigma^2=1[/math]) zwiemy standardowym rozkładem Gaussa i oznaczamy zwykle [math]N(0,1)[/math]. Na wykresie zaznaczono na nim m. in. wartość całki od [math]-\infty[/math] do [math]-1[/math], czyli prawdopodobieństwo, że wylosowana z tego rozkładu liczba będzie mniejsza niż [math]-1[/math]. Jak widać, wynosi ono ok. 16%, a jeśli weźmiemy pod uwagę również wartości większe od 1, będzie to aż 32%! Oznacza to, że przy losowaniu wielu liczb z tego rozkładu niemal 1/3 wyników może znaleźć się w odległości większej niż [math]\sigma[/math] od wartości oczekiwanej.
Rozkład Gaussa pełni w statystyce bardzo znaczącą rolę ze względu na Centralne Twierdzenie Graniczne, mówiące o asysmptotycznym rozkładzie sumy duzej liczby zmiennych. Na początek udowodnimy je w najprostszym przypadku, kiedy wszystkie te zmienne pochodzą z tego samego rozkładu gęstości prawdopodobieństwa.
Twierdzenie Lindeberga—Lévy'ego
Zakładamy, że [math]x_{i}[/math] są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej [math]\mu[/math] i wariancji [math]\sigma ^{2}[/math]. Dla [math]n\rightarrow \infty[/math], wielkość
podlega rozkładowi normalnemu o wartości średniej 0 i wariancji 1.
Funkcja charakterystyczna rozkładu
W dowodzie skorzystamy z pojęcia funkcji charakterystycznej rozkładu. Dla zmiennej losowej [math]x[/math] jest to wartość oczekiwana wyrażenia [math]e^{itx}[/math], gdzie [math]i=\sqrt{-1}[/math]. Dla rozkładów ciągłych jest to transformata Fouriera funkcji gęstości prawdopodobieństwa [math]f(x)[/math]:
Użyteczne będą poniższe związki, które wyprowadzić można bezpośrednio z definicji:
Funkcja charakterystyczna sumy zmiennych niezależnych
Dla niezależnych zmiennych [math]x[/math] i [math]y[/math]:
[math] w=x+y\Rightarrow \phi _{w}(t) =\phi _{x}\left( t\right) \cdot \phi_{y}(t). [/math]
Dowód:
[math] \phi _{w}(t) = E(e^{it(x+y)})=E(e^{itx}\cdot e^{ity}) = E(e^{itx})\cdot E(e^{ity})=\phi _{x}\left( t\right) \cdot \phi_{y}(t). [/math]
Pochodna funkcji charakterystycznej
Bezpośrednio z definicji (różniczkujemy po [math]dt[/math], więc przy każdym różniczkowaniu spada nam z wykładnika [math]i x[/math], [math]x[/math] zostaje pod całką a [math]i[/math] jako stała wychodzi przed całkę) widać, że:
Związek pochodnej funkcji charakterystycznej z momentami zmiennej losowej
[math]n[/math]-ta pochodna funkcji charakterystycznej w zerze (czyli dla [math]t=0[/math]) wynosi
Dowód twierdzenia Lindeberga—Lévy'ego
rozważamy zmienną losową [math]x_i[/math] pochodzącą z rozkładu o wartości oczekiwanej [math]\mu[/math] i wariancji [math]\sigma^2[/math]. Funkcję charakterystyczną tego rozkładu [math]\phi(z)[/math] możemy rozwinąć w szereg Taylora wokół [math]z_0[/math]
Rozpatrzmy zmienną [math]y_i[/math] przesuniętą względem [math]x_i[/math] o [math]-\mu[/math] i przeskalowaną czynnikiem [math]\sigma\sqrt{n}[/math]:
Rozważać będziemy funkcję charakterystyczną rozkładu gęstości prawdopodobieństwa tej zmiennej. Przypomnijmy własność funkcji tworzącej wokól zera (5) [math] \phi^{(n)}(0)= i^{n}E(x^{n}) [/math]; wynika stąd, że
[math]\phi_{y_i}^{(0)}(0)=1[/math],
[math]\phi_{y_i}^{(1)}(0)=0[/math],
[math]\phi_{y_i}^{(2)}(0)=-\frac1 n[/math],
czyli funkcja charakterystyczna [math]y_i[/math] rozwinięta w szereg Taylora (6) będzie miała postać
Korzystając ze udowodnionej powyżej własności
[math] w=x+y\Rightarrow \phi _{w}(t) =\phi _{x}\left( t\right) \cdot \phi_{y}(t) [/math]
możemy przedstawić pierwsze wyrazy rozwinięcia Taylora sumy [math]y=\sum_{i=1}^n y_i[/math], odpowiadającej wprowadzonej wcześniej wielkości (2) [math] y=\frac{ \left(\sum\limits_{i=1}^{n} x_{i}\right) -n\mu }{\sigma \sqrt{n}} [/math], jako iloczyn [math]n[/math] rozwinięć funkcji charakterystycznych (7):
[math]
\phi_y(z)=\left(1-\frac{z^2}{2n}+\ldots\right)^n.
[/math]
Przy przejściu z [math]n[/math] do nieskończoności (i konsekwentnym pomijaniu wyrazów wyższego rzędu) dostajemy
bo [math]e^x=\lim_{n\rightarrow\infty} (1+x/n)^n[/math]
transformata Fouriera funkcji Gaussa
Funkcja charakterystyczna rozkładu normalnego o wartości oczekiwanej 0 i jednostkowej wariancji będzie miała postać
[math] \dfrac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^\infty \left( \cos(tx) + i \sin(tx) \right) e^{\frac{-x^2}{2}} dx = [/math]
[math] \dfrac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^\infty \cos(tx) e^{\frac{-x^2}{2}} dx + \dfrac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^\infty i \sin(tx) e^{\frac{-x^2}{2}} dx [/math]
ponieważ funkcja [math]\sin(x)[/math] jest antysymetryczna, druga całka znika. Dostajemy
[math] \int\limits_{-\infty}^\infty e^{itx}\frac{1}{\sqrt{2\pi }} e^{\frac{-x^2}{2}} dx = \dfrac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^\infty \cos(tx) e^{\frac{-x^2}{2}} dx [/math]
Dla części symetrycznej znajdujemy w tablicach całkę oznaczoną
[math] \int\limits_{0}^{\infty} e^{-a^2 x^2} \cos(b x) dx = \frac{ \sqrt{\pi} e^{-\tfrac{b^2}{4a^2}} } {2 a} [/math]
po wymnożeniu przez 2 i podstawieniu [math] b=t[/math] i [math]a^2=\frac{1}{2}[/math] dostajemy
[math] \int\limits_{-\infty}^{\infty} e^{-\frac{1}{2} x^2} \cos(t x) dx = \frac{ \sqrt{\pi} e^{ -\frac{t^2} { 4 \frac{1}{2} } } } {\frac{1}{\sqrt{2}}} = \sqrt{2\pi} e^{-\frac{t^2}{2}} [/math]
W analizie sygnałów wynik ten będzie oznaczał, że transformacja Fouriera funkcji Gaussa jest funkcją Gaussa. W tym konkretnym przypadku otrzymaliśmy funkcję tożsamą z funkcją charakterystyczną rozkładu rozważanej sumy zmiennych, czyli rozkład ten będzie (w przypadku granicznym) miał postać funkcji Gaussa.
Rysunek 1 ilustruje powyższe twierdzenie dla przypadku sumy zmiennych pochodzących z rozkładu równomiernego. Jak widać, już dla sumy 3 zmiennych rozkład wydaje się bardzo podobny do normalnego. Niestety, często istotne bywają różnice dla wartości bardzo dużych lub bardzo małych. Otóż według wzoru wartości gęstości prawdopodobieństwa rozkładu normalnego dążą do zera dla dużych wartości bezwzględnych zmiennej asymptotycznie, lecz zera faktycznie nie osiągają. Inaczej mówiąc, prawdopodobieństwo wylosowania dowolnie dużej wartości z rozkładu Gaussa będzie małe, ale nie zerowe. Za to suma np. czterech zmiennych z rozkładu równomiernego od zera do jedynki (prawy dolny wykres rys. 1) nie przekroczy nigdy wartości 4, czyli prawdopodobieństwo dla [math]x\gt 4[/math] będzie dokładnie zerem. I choć w skali rysunku 1 efekt ten jest prawie niewidoczny, warto pamiętać, że testy oparte na założeniu normalności rozkładów często operują właśnie w okolicach tych "ogonów", gdzie przybliżenie rozkładu normalnego, uzyskane za pomocą tej prostej procedury, zawodzi.