WnioskowanieStatystyczne/Bonferroni
Błędy I i II rodzaju
Przyjęcie poziomu istotności ([math]\alpha[/math]) na poziomie 5 procent oznacza, że średnio w jednym na dwadzieścia przypadków możemy odrzucić prawdziwą hipotezę, czyli popełnić błąd I rodzaju (false positive).
Dla kompletności przypomnijmy, że błąd II rodzaju polega na przyjęciu hipotezy fałszywej (false negative) i jest związany z poziomem istotności testu.
Pojęcia błędów I i II rodzaju, podobnie jak hipotezy zerowej (H0) wprowadzili do statystyki Jerzy Spława-Neyman i Egon Pearson w latach 30. XX wieku.
hipoteza H0 | |||
Prawdziwa | Fałszywa | ||
---|---|---|---|
decyzja | Odrzuć | błąd typu I (False Positive) | poprawna (True Positive) |
Przyjmij | poprawna (True Negative) | błąd typu II (False Negative) |
Wielokrotne porównania
[math]N[/math] obserwacji podzielonych na 7 grup. Testujemy hipotezę, że średnie tych grup są równe -- czyli niejako przyporządkowanie do grup jest przypadkowe. Możemy wykonać [math]\binom{7}{2}=21[/math] testów różnic między grupami. Jeśli przyjmiemy poziom istotności 0.05, mamy dużą szansę na dokonanie fałszywego odkrycia.
Problem wielokrotnych porównań (ang. multiple comparisons) pojawia się w eksploracyjnej (w odróżnieniu od konfirmacyjnej) analizie danych, kiedy np. nie wiemy gdzie oczekiwać różnic.
Korekcja Bonferroniego polega na podzieleniu poziomu istotności przez liczbę porównań. Jest mocno konserwatywna.
por. http://en.wikipedia.org/wiki/Data_dredging zwane też [math]p[/math]-hacking.
Evaluation of measurement data — Guide to the expression of uncertainty in measurement
JCGM 100:2008 GUM 1995 with minor corrections http://www.iso.org/sites/JCGM/GUM-JCGM100.htm
3.4.8 Although this Guide provides a framework for assessing uncertainty, it cannot substitute for critical thinking, intellectual honesty and professional skill. The evaluation of uncertainty is neither a routine task nor a purely mathematical one; it depends on detailed knowledge of the nature of the measurand and of the measurement. The quality and utility of the uncertainty quoted for the result of a measurement therefore ultimately depend on the understanding, critical analysis, and integrity of those who contribute to the assignment of its value.