Z Brain-wiki
Skocz do: nawigacja, szukaj

Wnioskowanie_Statystyczne_-_wykład

Błędy I i II rodzaju

Przyjęcie poziomu istotności (\alpha) na poziomie 5 procent oznacza, że średnio w jednym na dwadzieścia przypadków możemy odrzucić prawdziwą hipotezę, czyli popełnić błąd I rodzaju (false positive).

Dla kompletności przypomnijmy, że błąd II rodzaju polega na przyjęciu hipotezy fałszywej (false negative) i jest związany z poziomem istotności testu.

Pojęcia błędów I i II rodzaju, podobnie jak hipotezy zerowej (H0) wprowadzili do statystyki Jerzy Spława-Neyman i Egon Pearson w latach 30. XX wieku.


hipoteza H0
Prawdziwa Fałszywa
decyzja Odrzuć błąd typu  I (False Positive) poprawna (True Positive)
Przyjmij poprawna (True Negative) błąd typu II (False Negative)


Linią przerywaną jest oznaczony rozkład jednej z możliwych hipotez alternatywnych. Na górnym wykresie zacieniowany obszar (o polu \beta) odpowiada prawdopodobieństwu błędnej akceptacji hipotezy alternatywnej (błąd II rodzaju, false nagative). Na dolnym zacieniowany obszar odpowiada prawdopodobieństwu odrzucenia hipotezy alternatywnej, czyli mocy testu (1-\beta) względem tej konkretnej hipotezy alternatywnej.


Wielokrotne porównania

Problem wielokrotnych porównań (ang. multiple comparisons) pojawia się w eksploracyjnej (w odróżnieniu od konfirmacyjnej) analizie danych, por. np. http://en.wikipedia.org/wiki/Data_dredging zwane też p-hacking.


Przykład

N obserwacji podzielonych na 7 grup. Testujemy hipotezę o różnicy między średnimi dowolnych par grup, wykonując \binom{7}{2}=21 testów różnic między dwoma grupami.

Załóżmy, że podziału na 7 grup dokonaliśmy zupełnie przypadkowo, czyli że nie powinna wystąpić istotna statystycznie różnica między średnimi żadnej pary. Jeśli test dla każdej pary wykonujemy na poziomie istoności p=5%, to przyjmujemy, że z prawdopodobieństwem 0,05 test może wykazać różnicę (FP). Prawdopodobieństwo, że test nie wykaże różnicy, wynosi[1] 1 - 0,05 = 0,95. Prawdopodobieństwo, że test poprawnie nie wykaże różnicy we wszystkich 21 porównaniach, wynosi (0,95)21 czyli ok. 0,34. Tak więc prawdopodobieństwo, że przynajmniej w jednej parze grup test fałszywie wykaże różnicę, pomimo wykonywania każdego testu na poziomie istotności 0,05 wynosi aż 1 - 0,34 = 0,66!

FWER: family-wise error rate

Poziom istotności zdefiniowany dla pojedynczych testów zastępujemy pojęciem FWER, czyli prawdopodobieństwem popełnienia przynajmniej jednego błędu I rodzaju w grupie (rodzinie) testów.

Poprawka Bonferroniego

gwarantuje, że jeśli każdy z m testów wykonamy na poziomie istotności \frac{\alpha}{m}, to \mathrm{FWER}=\alpha.

Rozważmy rodzinę m hipotez Hi (w powyższym przykładzie m = 21), przypisując każdej Hi p-wartość (ang. p-value) pi. Niech m0 z tych hipotez będzie prawdziwych. FWER, czyli prawdopodobieństwo popełnienia przynajmniej jednego błędu I rodzaju w którymś z m testów hipotez Hi, będzie nie większy niż suma prawdopodobieństw popełnienia błędu I rodzaju  P\left(p_i\leq\frac \alpha m\right) w każdym testów z osobna. I to niezależnie od tego, czy testy są niezależne czy nie, ani od wartości m0, czyli od tego jak wiele z hipotez Hi jest prawdziwych:

 \text{FWER}  = P\left\{ \bigcup_{i=1}^{m_0}\left(p_i\leq\frac \alpha m \right) \right\} \leq \sum_{i=1}^{m_0} P\left(p_i\leq\frac \alpha m\right) \leq m_0 \frac{\alpha}{m}\leq m \frac{\alpha}{m} = \alpha.

-- skorzystaliśmy z nierówności Boole'a. Jak widać jest to poprawka bardzo konserwatywna, wymuszająca przeprowadzanie testów na potencjalnie zaniżonych poziomach istotności \frac{\alpha}{m}.

Sprawdźmy jak zadziała w przykładzie 7 grup: mamy 21 porównań, jeśli chcemy utrzymać prawdopodobieństwo co najmniej jednego błędu I rodzaju na poziomie 5%, każdy test musimy wykonać na poziomie 0,05 / 21 = ok. 0.002381, czyli mniej niż 0,0024%! Wtedy prawdopodobieństwo popełnienia jednego błędu I rodzaju wyniesie

 1 - \left( 1 - \frac{0,05}{21} \right)^{21} \approx 0,0488

czyli mniej niż 0,05.

Analogiczny wynik dostaniemy np. dla tysiąca testów

 1 - \left( 1 - \frac{0,05}{1000} \right)^{1000} \approx 0,0488

ale wtedy każdy z testów musielibyśmy wykonywać na poziomie istotności 0,00005.

Poprawka Bonferroniego-Holma

P-wartości pi odpowiadające hipotezom Hi sortujemy w kolejności od najmniejszej do największej

p(1) < p(2) < ... < p(m)

Dla \textrm{FWER}=\alpha znajdujemy najmniejsze k, dla którego

p_k > \frac{\alpha}{m+1-k}

i odrzucamy hipotezy H1 ... Hk-1, przyjmując Hk ... Hm.

dowód

Załóżmy, że wśród m testowanych Hi jest m0 hipotez prawdziwych.

Musimy dowieść, że prawdopodobieństwo popełnienia błędu I rodzaju w tej procedurze jest nie większe niż \alpha.

Zaczynamy od H1: niech pierwszą prawdziwą odrzuconą hipotezą (pierwszy błąd I rodzaju, false positive) będzie Hk. To znaczy, że Hk-1 była ostatnią hipotezą fałszywą, i

k - 1 + m_0 \leq m \implies m_0 \leq m - k + 1.

Skoro Hk została odrzucona, to z definicji procedury

 p_k \leq \frac{\alpha}{m - k +1} \leq \frac{\alpha}{m_0}

bo skoro m_0 \leq m - k + 1, to \frac{\alpha}{m - k +1} \leq \frac{\alpha}{m_0}. Odpowiada to poprawce Bonferroniego w zbiorze m0 hipotez prawdziwych.

False Discovery Rate FDR

...w podobnej procedurze kontroluje oczekiwany stosunek liczby hipotez błędnie odrzuconych do liczby hipotez odrzuconych. Poniżej przykład zastosowania z artykułu On the statistical significance of event-related EEG desynchronization and synchronization in the time-frequency plane. PDF.

Calculating the high-resolution ERD/ERS from the MP decomposition in statistically significant regions. (a) Average time-frequency energy density approximated from the MP decomposition. Reference epoch marked by black vertical lines, movement onset in the fifth second marked by white dashed line. (b) Energy from (a) integrated in resels 0.25 s x 2 Hz. (c) Average values of ERD/ERS calculated for the time from the end of the reference epoch to the end of the recorded epoch (black dashed vertical lines in (a) and (b)). (d) ERD/ERS from (c) indicated as statistically different from the reference epoch by the pseudo- bootstrap procedure (Section II-D3) corrected by a 5% FDR. (e) High-resolution map of ERD/ERS calculated from (a). (f) High-resolution ERD/ERS in statistically significant regions from (d). A— \mu desynchronization, B—desynchonization of the \mu harmonic, C—postmovement \beta synchronization, D—harmonic of \beta. Horizontal scales in seconds, vertical in Hz.



Evaluation of measurement data — Guide to the expression of uncertainty in measurement

JCGM 100:2008 GUM 1995 with minor corrections http://www.iso.org/sites/JCGM/GUM-JCGM100.htm


3.4.8 Although this Guide provides a framework for assessing uncertainty, it cannot substitute for critical thinking, intellectual honesty and professional skill. The evaluation of uncertainty is neither a routine task nor a purely mathematical one; it depends on detailed knowledge of the nature of the measurand and of the measurement. The quality and utility of the uncertainty quoted for the result of a measurement therefore ultimately depend on the understanding, critical analysis, and integrity of those who contribute to the assignment of its value.
  1. dla testów niezależnych; w tym przykładzie wyniki testów nie będą niezależne -- dlaczego?