FT-intuicja
Intuicyjna intepretacja przekształcenia Fouriera
Równaniom będziemy się bliżej przyglądać na osobnym wykładzie o przekształceniu Fouriera, na razie spróbujmy nabrać potrzebnej na ćwiczeniach intuicji, traktując obliczenia w kategorii iloczynów skalarnych z kolejnymi sinusami o odpowiednio dobranych fazach (w powyższym równaniu fazy są ukryte w kącie liczby zespolonej). Weźmy przykładowy sygnał s złożony z dwóch sinusów a i b, s = a + b:
Policzmy iloczyny z sinusami o optymalnie dobranych fazach; jak widać na poniższym rysunku, sinus o częstości 2,4 jest podobny do składowej a sygnału s, ale miara podobieństwa, czyli wartość iloczynu skalarnego, zależy silnie od fazy sinusa, z którym liczymy iloczyn sygnału — gwiazdką oznaczyliśmy fazę, dla której iloczyn jest największy:
Podobne dopasowania można wykonać dla każdej częstości wzajemnie ortogonalnych sinusów o częstościach [math] \frac1T, \frac2T, \ldots[/math] do częstości Nyquista.
Wyniki — optymalne fazy i uzyskane dla nich maksymalne wartości iloczynów skalarnych — przedstawiamy na wykresach: