Model autoregresyjny (AR): Różnice pomiędzy wersjami

Z Brain-wiki
Linia 175: Linia 175:
 
Pokazaliśmy powyżej (na przykładzie błądzenia przypadkowego), że znając współczynniki (parametry) modelu AR możemy z nich wyliczyć funkcję autokorelacji odpowiadającego im procesu, bez znajomości konkretnej realizacji sygnału. Z kolei z funkcji autokorelacji możemy z pomocą powyższego twierdzenia '''obliczyć''' widmo. To widmo będzie wyliczone a nie estymowane, ale nie odnosi się bezpośrednio do sygnału, od którego zaczynaliśmy, tylko do procesu opisanego '''wyestymowanymi''' parametrami modelu AR.
 
Pokazaliśmy powyżej (na przykładzie błądzenia przypadkowego), że znając współczynniki (parametry) modelu AR możemy z nich wyliczyć funkcję autokorelacji odpowiadającego im procesu, bez znajomości konkretnej realizacji sygnału. Z kolei z funkcji autokorelacji możemy z pomocą powyższego twierdzenia '''obliczyć''' widmo. To widmo będzie wyliczone a nie estymowane, ale nie odnosi się bezpośrednio do sygnału, od którego zaczynaliśmy, tylko do procesu opisanego '''wyestymowanymi''' parametrami modelu AR.
  
==Wielozmienny model AR==
 
 
[[Model autoregresyjny (AR)|Model AR]] opisuje wartość
 
sygnału w chwili <math>t</math> jako kombinację liniową jego wartości
 
w chwilach poprzednich (oraz szumu). W przypadku wielowymiarowym
 
możemy włączyć do tego opisu wartości wszystkich sygnałów
 
<math>s_i</math>, czyli wektora
 
<math>\vec{s}(t)</math>. Wielozmienny model AR (MVAR, ''multivariate
 
autoregressive'' ) można wówczas opisać wzorem:
 
 
<math>
 
\vec{s}(t)=\sum_{i=1}^p A(i) \vec{s}(t-i) + \vec{\epsilon}(t) ,
 
</math>
 
 
gdzie <math>\vec{\epsilon}(t)</math> będzie wektorem
 
szumów, zaś <math>A(i)</math> będą macierzami współczynników modelu.
 
Przechodząc do przestrzeni częstości otrzymamy:
 
 
<math>
 
\vec{s}(\omega)=A^{-1}(\omega)\vec{\epsilon}(\omega)=H(\omega)\vec{\epsilon}(\omega),
 
</math>
 
 
gdzie <math>H(\omega)</math> jest macierzą przejścia.  MVAR jest modelem typu "czarna skrzynka", gdzie na wejściu występują szumy, na wyjściu sygnały, a system jest opisany przez macierz przejścia. Zawiera on informacje o własnościach widmowych sygnałów i związkach między nimi.
 
 
Na podstawie macierzy <math>H(\omega)</math> można obliczyć macierz
 
gęstości widmowej zawierającą widma mocy dla pojedynczych kanałów jak
 
również funkcje wzajemnej gęstości mocy pomiędzy kanałami.  Stosując
 
tego typu podejście, w którym wszystkie sygnały generowane przez
 
pewien proces są rozpatrywane jednocześnie, można policzyć z macierzy
 
spektralnej nie tylko koherencje zwykłe pomiędzy dwoma kanałami, ale
 
również koherencje wielorakie opisujące związek danego kanału z
 
pozostałymi i koherencje cząstkowe opisujące bezpośrednie związki
 
między dwoma kanałami po usunięciu wpływu pozostałych kanałów. W
 
przypadku gdy pewien kanał 1 będzie wpływał na kanały 2 i 3,
 
obliczając koherencję zwykłą znajdziemy związek między 2 oraz 3,
 
chociaż nie są one ze sobą bezpośrednio powiązane, natomiast
 
koherencja cząstkowa nie wykaże związku między nimi.
 
 
Macierz <math>H(\omega)</math> jest niesymetryczna, a jej wyrazy
 
pozadiagonalne mają sens przyczynowości Grangera, co oznacza, że
 
uwzględnienie wcześniejszej informacji zawartej w jednym z sygnałów
 
zmniejsza błąd predykcji drugiego sygnału. Opierając się na tej
 
własności zdefiniowano Kierunkową Funkcję Przejścia (DTF, directed
 
transfer function) jako znormalizowany element pozadiagonalny
 
<math>H(\omega)</math>.  DTF opisuje kierunek propagacji i skład
 
widmowy rozchodzących się sygnałów.
 
 
Otrzymamy w ten sposób całościowy opis zmian wszystkich sygnałów
 
jednocześnie.  Co ciekawe, obliczona na tej podstawie funkcja
 
charakteryzująca zależności między sygnałami <math>s_i</math> (funkcja
 
przejścia) nie jest symetryczna, w przeciwieństwie do
 
np. korelacji. Dzięki temu może służyć wnioskowaniu nie tylko o sile
 
zależności między poszczególnymi sygnałami składowymi, ale też o
 
kierunku przepływu informacji między nimi.  W przybliżeniu odpowiada
 
to informacji, w którym z sygnałów struktury odpowiadające danej
 
częstości pojawiają się wcześniej.
 
  
  
 
<references/>
 
<references/>

Wersja z 15:11, 16 lis 2016

AS/ Model autoregresyjny (AR)

Model autoregresyjny (rzędu [math]M[/math]) opisuje procesy dyskretne, w których wartość sygnału w danej chwili jest sumą liniowej kombinacji [math]M[/math] wartości poprzednich i nieskorelowanego szumu [math]\epsilon[/math]

[math] s[n] = \sum_{i=1}^M a_i s[n-i] + \epsilon[n] [/math]

W każdej realizacji tego samego procesu (dla tych samych współczynników [math]a_i[/math] i wartości początkowych sygnału), [math]\epsilon_t[/math] są niezależnymi liczbami losowymi, więc o wartości [math]s(t)[/math] w konkretnej chwili [math]t[/math] możemy mówić tylko językiem prawdopodobieństwa.

Trzy przykładowe realizacje procesu AR 3-go rzędu ([math]M=3[/math]) o tych samych współczynnikach i wartościach początkowych.

Mimo tego, na podstawie współczynników AR możemy określić wiele ogólnych własności sygnału, np. wartość oczekiwaną [math]\bar{s}[/math] (w praktyce estymowaną przez wartość średnią) i wariancję (jej estymatorem jest suma kwadratów odchyleń wartości sygnału od wartości oczekiwanej), a nawet widmo mocy. Można również rozważać szersze klasy modeli tego typu, jak np. model MA (ruchomej średniej, ang. moving average), gdzie uśredniamy [math]\epsilon_t[/math] zamiast [math]s(t)[/math], czy proces mieszany ARMA, opisany między innymi w klasycznych pozycjach „Analizie szeregów czasowych”, autorstwa Boxa i Jenkinsa oraz w „Metodach analizy szeregów czasowych” autorstwa Piersola i Bendata.


AR(1)

Najprostszym przykładem jest proces AR pierwszego rzędu (nazywany liniowym procesem Markowa), w którym wartość w danej chwili zależy wyłacznie od wartości w chcili poprzedniej i szumu: [math] s[n] = a s[n-1] + \epsilon_n [/math]

podstawiając trzy kolejne wyrazy

[math]s[n] = \epsilon_n + a s[n-1] [/math]

[math]s[n-1] = \epsilon_{n-1} + a s[n-2] [/math]

[math]s[n-2] = \epsilon_{n-2} + a s[n-3][/math]

dostaniemy

[math] s[n] = [/math]

[math] \epsilon_n + a s[n-1] = [/math]

[math] \epsilon_n + a \left( \epsilon_{n-1} + a s[n-2] \right) = [/math]

[math] \epsilon_n + a \left( \epsilon_{n-1} + a (\epsilon_{n-2} + a s[n-3]) \right) = [/math]

[math] \epsilon_n + a \epsilon_{n-1} + a^2 \epsilon_{n-2} + a^3 s[n-3] [/math]


W ogólnym przypadku [math]N[/math] wyrazów będzie to suma

[math] s[n] = \sum_{i=0}^{N-1} a^i \epsilon_{n-i} + a^N s[n-N] [/math]

Dla [math]N \rightarrow \infty[/math] zależność od pierwszego elementu [math]s[n-N][/math] zanika i dostejemy asymptotyczną reprezentację

[math] s[n] = \epsilon_n + a\epsilon_{n-1} + a^2\epsilon_{n-2} +\ldots = \sum_{i=0}^{\infty} a^i \epsilon_{n-i} [/math]

Jeśli wartość oczekiwana [math]\epsilon_i[/math] wynosi 0 ([math]E(\epsilon_i)=0[/math]) a wariancja [math]\sigma^2(\epsilon_i)=\sigma_\epsilon^2[/math], to wariancja w punkcie [math]n[/math]

[math]\begin{matrix} \sigma^2_{s[n]} = E\left( (\epsilon_n + a\epsilon_{n-1} + a^2\epsilon_{n-2}+\ldots+a^{n-1}\epsilon_1)^2\right) =\\ = \sigma_\epsilon^2 \left(1+a^2+a^4+\ldots+a^{2n-2} \right) = \left\{ \begin{matrix} \sigma_\epsilon^2 \left(\frac{1-a^{2n}}{1-a^2} \right) & |a|\ne 1\\ n \sigma_\epsilon^2 & |a|=1 \end{matrix} \right. \end{matrix}[/math]

Autokowariancja [math]E(s[n] s[n+\tau])[/math]

[math]\begin{matrix} E\left( (\epsilon_n + a\epsilon_{n-1} + a^2\epsilon_{n-2}+\ldots+a^{n-1}\epsilon_1) (\epsilon_{n+\tau} + a\epsilon_{n+\tau-1} +\ldots+a^{n+\tau-1}\epsilon_1)\right) =\\ = \sigma_\epsilon^2 \left(a^\tau+a^{\tau+2}+\ldots+a^{\tau+2(n-1)} \right) = \left\{ \begin{matrix} \sigma_\epsilon^2 a^\tau \left(\frac{1-a^{2n}}{1-a^2} \right) & |a|\ne 1\\ n \sigma_\epsilon^2 & |a|=1 \end{matrix} \right. \end{matrix}[/math]

Dla [math]|a|\ne 1[/math] przy [math]n\rightarrow\infty[/math] [math] \sigma^2_{x[n]} \stackrel{n\rightarrow\infty}{\longrightarrow} \frac{\sigma^2_\epsilon}{1-a^2} \;\;\; ; \;\;\; \sigma_{x[n], x[n+\tau]} \stackrel{n\rightarrow\infty}{\longrightarrow} \frac{\sigma^2_\epsilon a^\tau}{1-a^2} [/math]

Autokowariancja [math] \rho(\tau) = \frac{ \sigma_{x[n], x[n+\tau]} }{ \sigma^2_{x[n]} } \stackrel{n\rightarrow\infty}{\longrightarrow} a^{|\tau|} [/math]

Proces jest asymptotycznie stacjonarny do rzędu 2, czyli wariancja i średnia nie zależą od czasu.

Dla [math]a=1[/math] proces ten obrazuje tzw. błądzenie przypadkowe.

Na podstawie znajomości samego współczynnika [math]a[/math] modelu AR(1) policzyliśmy np. funkcję autokorelacji modelu, co daje już znajomość widma procesu (z przytoczonego poniżej twierdzenia Wienera-Chinczyna). Podobnie w procesach wyższych rzędów (1) znajomość współczynników [math]\{a_i\}_{i=1..M}[/math] daje nam dokładną wiedzę o własnościach generowanych przez nie procesów, bez znajomości sygnału [math]s[n][/math], którego wartości mogą różnić się w kolejnych realizacjach ze względu na element stochastyczny — szum [math]\epsilon[/math].

W praktyce analizy sygnału postępujemy odwrotnie — do konkretnej realizacji dopasowujemy model AR. Głównym problemem jest wybór rzędu modelu, estymacja współczynników [math]a_i[/math] najlepiej pasujących do danego sygnału posiada stabilne rozwiązania.

Jeśli dozwolimy, aby sygnał zależał również bezpośrednio od poprzednich wartości szumu [math]\epsilon[/math], dostajemy pełną postać procesu ARMA(L,M) (ang. auto-regressive moving average):

[math] \sum_{i=1}^L b_i\epsilon_{n-i} = \sum_{j=1}^M a_j s[n-j] [/math]

Twierdzenie Wienera-Chinczyna

Transformata Fouriera funkcji autokorelacji jest równa kwadratowi modułu transformaty Fouriera.

Dowód Kładąc [math]f = g[/math] we wzorze na funkcję korelacji sygnałów f i g, dostajemy

[math] \mathcal{F} \left( \int_{-\infty}^{\infty} f(t) f(t+\tau) dt \right) = [/math] [math] \int_{-\infty}^{\infty} e^{-i\omega \tau} \left( \int_{-\infty}^{\infty} f(t) f(t+\tau) dt \right) d\tau = [/math] [math] \int_{-\infty}^{\infty} e^{-i\omega(t+\tau)} e^{i\omega t} \int_{-\infty}^{\infty} f(t) f(t+\tau) dt d\tau = [/math] [math] \int_{-\infty}^{\infty} e^{-i\omega(t+\tau)} f(t+\tau) d\tau \int_{-\infty}^{\infty} e^{i\omega t} f(t) dt = [/math] [math] \hat{f}(\omega) \overline{\hat{f}(\omega)} = |\hat{f}(\omega)|^2 [/math]


Parametryczna estymacja widma mocy sygnałów

Pokazaliśmy powyżej (na przykładzie błądzenia przypadkowego), że znając współczynniki (parametry) modelu AR możemy z nich wyliczyć funkcję autokorelacji odpowiadającego im procesu, bez znajomości konkretnej realizacji sygnału. Z kolei z funkcji autokorelacji możemy z pomocą powyższego twierdzenia obliczyć widmo. To widmo będzie wyliczone a nie estymowane, ale nie odnosi się bezpośrednio do sygnału, od którego zaczynaliśmy, tylko do procesu opisanego wyestymowanymi parametrami modelu AR.