Ćwiczenia z elektrodynamiki dla neuroinformatyków: Różnice pomiędzy wersjami
(Nie pokazano 6 pośrednich wersji utworzonych przez tego samego użytkownika) | |||
Linia 7: | Linia 7: | ||
== Ogłoszenia bieżące 2019/20== | == Ogłoszenia bieżące 2019/20== | ||
− | Wyniki | + | Wyniki ćwiczeń oraz egzaminu poprawkowego:<br> |
− | [[Grafika: | + | [[Grafika:Kolokwium1_2_egz_p.jpg|700px]]<br> |
<br> | <br> | ||
− | + | Część ustna egzaminu poprawkowego odbędzie się w dniu <b>21.02.2020</b> (piątek) o godzinie 11:00 w sali 4.59. <br> | |
− | Część ustna egzaminu poprawkowego odbędzie się w dniu | ||
<!-- | <!-- | ||
Egzamin pisemny odbędzie się w dniu 29.01.2020 w godz. 10-14 w sali 1.03 (Pasteura 5).<br> | Egzamin pisemny odbędzie się w dniu 29.01.2020 w godz. 10-14 w sali 1.03 (Pasteura 5).<br> | ||
Linia 25: | Linia 24: | ||
:[[Elektrodynamika/Zadania domowe 1| Zadania domowe 1]] | :[[Elektrodynamika/Zadania domowe 1| Zadania domowe 1]] | ||
− | Egzamin poprawkowy pisemny odbędzie się w dniu <b> | + | Egzamin poprawkowy pisemny odbędzie się w dniu <b>21.02.2017</b> (piątek) w godzinach <b>9:00 - 13:00</b> w sali <b>1.38</b>. |
Terminy kolokwiów: | Terminy kolokwiów: |
Aktualna wersja na dzień 16:07, 19 lut 2020
Elektrodynamika dla neuroinformatyków - ćwiczenia
Ogłoszenia bieżące 2019/20
Wyniki ćwiczeń oraz egzaminu poprawkowego:
Część ustna egzaminu poprawkowego odbędzie się w dniu 21.02.2020 (piątek) o godzinie 11:00 w sali 4.59.
Termin zajęć
Wykłady odbywają się raz w tygodniu, w piątki, w godzinach 09:15 - 11:00. Sala 2.08, ul. Pasteura 5.
Ćwiczenia odbywają się raz w tygodniu, w piątki, w godzinach 11:15 - 13:00. Sala 1.37, ul. Pasteura 5.
Kontakt z prowadzącym
Wykłady prowadzi dr hab. Maciej Kamiński, pokój 4.69, ul. Pasteura 5.
Ćwiczenia prowadzi prof. dr hab. Marek Trippenbach, pokój 5.33, ul. Pasteura 5.
Preferowany sposób kontaktu - e-mail: Marek.Trippenbach@fuw.edu.pl
Warunki zaliczenia
Ćwiczenia zostaną zaliczone osobom, które spełnią dwa niezwykle proste warunki:
- Posiadanie maksymalnie dwóch nieusprawiedliwionych nieobecności na ćwiczeniach,
- Posiadanie sumy punktów z dwóch kolokwiów nie mniejszej niż połowa punktów możliwych do zdobycia.
- Osoby posiadające zaliczenie ćwiczeń dopuszczone zostaną do egzaminu pisemnego, a następnie ustnego (niezależnie od wyniku z części pisemnej).
- Osoby nie mające tego szczęścia, muszą podejść do egzaminu pisemnego i uzyskać z niego przynajmniej połowę możliwych do zdobycia punktów. Jeśli tak się stanie, to zostaną one dopuszczone do części ustnej egzaminu, w przeciwnym wypadku pozostaje sesja poprawkowa.
- Kilku osobom posiadającym nadzwyczajnie dobre wyniki z kolokwiów oraz egzaminu pisemnego mogą zostać zaproponowane oceny końcowe. Możliwe jest oczywiście wzgardzenie takim podarkiem i próba podwyższenia zaproponowanej oceny poprzez egzamin ustny, co gorąco poleca prowadzący. Niestety, jak to w życiu bywa, może się również zdarzyć obniżenie oceny, a w skrajnych wypadkach skierowanie na egzamin w sesji poprawkowej.
Zadania ćwiczeniowe
Wyniki kolokwiów i egzaminu
Zagadnienia na egzamin ustny
Poniżej znajduje się lista zagadnień na egzamin ustny. Proszę zwrócić uwagę, że NIE jest to zbiór pytań, z którego będzie następowało losowanie.
- Równania Maxwella w próżni. Postać różniczkowa i całkowa w przypadku stacjonarnym. Zasada zachowania ładunku elektrycznego.
- Opis potencjału pola elektrycznego [math]\vec{E}[/math] oraz magnetycznego [math]\vec{H}[/math]. Równania na potencjały.
- Cechowanie potencjałów. Wybór punktu odniesienia.
- Rozwinięcie multipolowe potencjału elektrycznego i magnetycznego. Moment monopolowy, dipolowy, kwadrupolowy. Zależność od wyboru układu odniesienia.
- Równania Maxwella w materii. Równania materiałowe, podstawowe zależności dla typowych substancji. Opis potencjalny w jednorodnych, izotropowych dielektrykach.
- Warunki graniczne dla pola elektrycznego i magnetycznego na styku ośrodków. Warunki zszycia dla potencjału elektrycznego.
- Równania Poissona i Laplace'a. Zagadnienie Dirichleta i Neumanna (opis założeń i warunków brzegowych). Funkcja Greena - rozwiązanie dla całej przestrzeni. Rozwiązanie równania ΔF = 0. Metoda separacji zmiennych.
- Zasada zachowania energii dla pola elektromagnetycznego. Wektor Poyntinga, gęstość energii w próżni i w materii. Energia pola elektrostatycznego i magnetostatycznego.
- Prądy stałe. Analogia z elektrostatyką dielektryków.
- Własności fali elektromagnetycznej (płaskiej, monochromatycznej) w ośrodku jednorodnym przezroczystym bez źródeł - kierunki [math]\vec{E}[/math] oraz [math]\vec{B}[/math], zależności między T, λ, ω, k, u. Polaryzacja liniowa, kołowa, eliptyczna. Natężenie fali, wektor Poyntinga.
- Fala elektromagnetyczna w izotropowym przewodniku - własności ogólne, różnice względem fali w dielektryku.
- Zagadnienie Cauchy-Dirichleta. Opóźniona funkcja Greena.
- Potencjały opóźnione [math]V(\vec{r} , t)[/math], [math]\vec{A}(\vec{r} , t)[/math]. Równania Jefimienki - istota równań, różnice względem przypadku stacjonarnego pól [math]\vec{E}[/math] i [math]\vec{B}[/math].
- Potencjały Liénarda-Wiecherta — postać potencjałów, istota.
- Elementy składowe pola [math]\vec{E}[/math] ładunku poruszającego się. Rozkład kątowy promieniowania poruszającego się ładunku punktowego.
- Pojęcie dipola prądowego, źródeł prądowych w przewodniku objętościowym. Prądy pierwotne i objętościowe (wtórne). Rodzaje źródeł prądowych w opisie zjawisk elektrycznych w układzie nerwowym.
- Potencjał warstwy dipolowej. Zastosowanie zasady kąta bryłowego do opisu potencjałów od komórek nerwowych.
- Różnice między EEG i MEG.
- Problem odwrotny w EEG i MEG — metodologia, jednoznaczność rozwiązania.
- Pojęcie „lead field” i praktyczne zastosowanie tego pojęcia do rozwiązania problemu wprost oraz problemu odwrotnego.