WnioskowanieStatystyczne/Elementy statystyki wielowymiarowej: Różnice pomiędzy wersjami

Z Brain-wiki
 
(Nie pokazano 4 pośrednich wersji utworzonych przez tego samego użytkownika)
Linia 40: Linia 40:
  
  
==Macierz kowariancji==
+
===Macierz kowariancji===
  
  
Linia 101: Linia 101:
  
  
 +
<!--
 
==Dwuwymiarowy rozkład normalny==
 
==Dwuwymiarowy rozkład normalny==
  
Linia 132: Linia 133:
 
</math>
 
</math>
  
 
+
-->
 
 
 
 
==Analiza składowych głównych (''Principal Components Analysis, PCA'')==
 
Jeśli zmienne są bardzo silnie skorelowane, mamy do czynienia z redundancją. Możemy ją zmniejszyć, jednocześnie redukując wymiar danych, zapisując po jednej zmiennej spośród każdej grupy zmiennych silnie skorelowanych, lub — jeszcze lepiej — wartość optymalnie dobranej liniowej korelacji. W tym celu macierz kowariancji
 
 
 
 
 
<math>
 
S=\left[
 
\begin{matrix}
 
\upsilon ar(x_{1}) & co\upsilon (x_{1},x_{2}) & ... & co\upsilon
 
(x_{1},x_{k}) \\
 
co\upsilon (x_{2},x_{1}) & \upsilon ar(x_{2}) & ... & co\upsilon
 
(x_{2},x_{k}) \\
 
... & ... & ... & ... \\
 
co\upsilon \left( x_{k},x_{1}\right) & co\upsilon (x_{k},x_{2}) & ... &
 
\upsilon ar(x_{k})
 
\end{matrix}
 
\right]
 
</math>
 
 
 
 
 
przedstawiamy w postaci diagonalnej
 
 
 
 
 
<math>
 
S=\left[
 
\begin{matrix}
 
r_{11} & r_{12} & ... & r_{1k} \\
 
r_{21} & r_{22} & ... & r_{2k} \\
 
... & ... & ... & ... \\
 
r_{k1} & r_{k2} & ... & r_{kk}
 
\end{matrix}
 
\right] \left[
 
\begin{matrix}
 
\lambda _{1} & 0 & ... & 0 \\
 
0 & \lambda _{2} & ... & 0 \\
 
... & ... & ... & ... \\
 
0 & 0 & ... & \lambda _{k}
 
\end{matrix}
 
\right] \left[
 
\begin{matrix}
 
r_{11} & r_{21} & ... & r_{k1} \\
 
r_{12} & r_{22} & ... & r_{k2} \\
 
... & ... & ... & ... \\
 
r_{1k} & r_{2k} & ... & r_{kk}
 
\end{matrix}
 
\right]
 
</math>
 
 
 
 
 
Wielkości <math>\lambda _{i}</math> są rozwiązaniami równania
 
<math>\left| S-\lambda I\right| =0,</math> a wektor <math>r_{i}</math>
 
osiami nowego układu współrzędnych. Składowe PCA są
 
liniowymi kombinacjami obserwowanych zmiennych.
 
 
 
 
 
 
 
[[Plik:pca.png|center|thumb|600px|Kierunki składowych głównych (PCA) w dwóch wymiarach]]
 
 
 
 
 
  
 
==Analiza wariancji wielu zmiennych (''Multivariate ANalysis of VAriance &mdash; MANOVA'')==
 
==Analiza wariancji wielu zmiennych (''Multivariate ANalysis of VAriance &mdash; MANOVA'')==
Linia 251: Linia 192:
 
</math>
 
</math>
  
Jako statystykę testową możemy wtbrać np. iloraz wyznaczników
+
Jako statystykę testową możemy wybrać np. iloraz wyznaczników
 
macierzy <math>S_{wew}</math> i <math>S</math>, który podlega rozkładowi
 
macierzy <math>S_{wew}</math> i <math>S</math>, który podlega rozkładowi
 
<math>\Lambda </math> Wilksa:
 
<math>\Lambda </math> Wilksa:
Linia 260: Linia 201:
 
</math>
 
</math>
  
 +
=Uczenie (maszynowe, ML) nienadzorowane (unsupervised learning)=
 +
 +
 +
 +
==Analiza składowych głównych (''Principal Components Analysis, PCA'')==
 +
Jeśli zmienne są bardzo silnie skorelowane, mamy do czynienia z redundancją. Możemy ją zmniejszyć,  redukując wymiar danych. W tym celu macierz kowariancji
 +
 +
 +
<math>
 +
S=\left[
 +
\begin{matrix}
 +
\upsilon ar(x_{1}) & co\upsilon (x_{1},x_{2}) & ... & co\upsilon
 +
(x_{1},x_{k}) \\
 +
co\upsilon (x_{2},x_{1}) & \upsilon ar(x_{2}) & ... & co\upsilon
 +
(x_{2},x_{k}) \\
 +
... & ... & ... & ... \\
 +
co\upsilon \left( x_{k},x_{1}\right) & co\upsilon (x_{k},x_{2}) & ... &
 +
\upsilon ar(x_{k})
 +
\end{matrix}
 +
\right]
 +
</math>
 +
 +
 +
przedstawiamy w postaci diagonalnej
 +
 +
 +
<math>
 +
S=\left[
 +
\begin{matrix}
 +
r_{11} & r_{12} & ... & r_{1k} \\
 +
r_{21} & r_{22} & ... & r_{2k} \\
 +
... & ... & ... & ... \\
 +
r_{k1} & r_{k2} & ... & r_{kk}
 +
\end{matrix}
 +
\right] \left[
 +
\begin{matrix}
 +
\lambda _{1} & 0 & ... & 0 \\
 +
0 & \lambda _{2} & ... & 0 \\
 +
... & ... & ... & ... \\
 +
0 & 0 & ... & \lambda _{k}
 +
\end{matrix}
 +
\right] \left[
 +
\begin{matrix}
 +
r_{11} & r_{21} & ... & r_{k1} \\
 +
r_{12} & r_{22} & ... & r_{k2} \\
 +
... & ... & ... & ... \\
 +
r_{1k} & r_{2k} & ... & r_{kk}
 +
\end{matrix}
 +
\right]
 +
</math>
 +
 +
 +
Wielkości <math>\lambda _{i}</math> są rozwiązaniami równania
 +
<math>\left| S-\lambda I\right| =0,</math> a wektor <math>r_{i}</math>
 +
osiami nowego układu współrzędnych. Składowe PCA są
 +
liniowymi kombinacjami obserwowanych zmiennych.
  
 +
 +
 +
[[Plik:pca.png|center|thumb|600px|Kierunki składowych głównych (PCA) w dwóch wymiarach]]
  
 
==Analiza skupień &mdash; ''Cluster Analysis'' ==
 
==Analiza skupień &mdash; ''Cluster Analysis'' ==

Aktualna wersja na dzień 18:25, 1 cze 2023

Wnioskowanie_Statystyczne_-_wykład


Elementy statystyki wielowymiarowej

Przypomnijmy najpierw pojęcia

Kowariancja i współczynnik korelacji

Przykładowe wartości współczynnika korelacji dla 300 par [math](x, y)[/math] o różnych stopniach współzależności.

Miarą związku między zmiennymi [math]x[/math] i [math]y[/math] jest kowariancja

[math] \sigma_{x, y} = E\left( (x-\mu_{x})(y-\mu_{y})\right) [/math]

lub unormowany do jedności współczynnik korelacji zmiennych [math]x[/math] i [math]y[/math]:

[math] \rho_{x, y}= \frac{\sigma_{x, y}}{\sigma_x \sigma_y}= \frac{E\left( \left(x-\mu_{x})(y-\mu_{y}\right)\right)} {\sqrt{E\left( (x-\mu_{x})^2\right) E\left( (y-\mu_{y})^2\right)}}, [/math]

gdzie [math]\mu_x[/math] i [math]\mu_y[/math] to odpowiednio wartości oczekiwane zmiennych [math]x[/math] i [math]y[/math]. Jeśli zmienne [math]x[/math] i [math]y[/math] związane są deterministyczną zależnością liniową (typu [math]y=c_1 x+c_2[/math]), to ich korelacja wynosi [math]1[/math] (lub [math]-1[/math], jeśli [math]c_1\lt 0[/math]). Jeśli wzrostowi zmiennej [math]x[/math] towarzyszy statystycznie wzrost zmiennej [math]y[/math], to ich korelacja jest dodatnia (pomiędzy [math]0[/math] a [math]1[/math]). Dla zmiennych niezależnych korelacja wynosi [math]0[/math].


Macierz kowariancji

[math] C=E[(x-\mu )(x-\mu )^{T}], \qquad \\ c_{ij}=E[(x_{i}-\mu_{i})(x_{j}-\mu _{j})] [/math]


dla dwóch wymiarów: [math]x=(x_{1,}x_{2})[/math] i [math]\mu =(\mu _{1}, \mu _{2})[/math]


[math] C=E\left[ \left(\begin{matrix}{x_{1}-\mu _{1}}\\ {x_{2}-\mu _{2}} \end{matrix} \right) \left( x_{1}-\mu_{1},x_{2}-\mu _{2}\right) \right] = [/math]

[math] \left[ \begin{matrix} E\left[ \left( x_{1}-\mu _{1}\right) ^{2}\right] & E\left[ \left( x_{1}-\mu _{1}\right) \left( x_{2}-\mu _{2}\right) \right] \\ E\left[ \left( x_{2}-\mu _{2}\right) \left( x_{1}-\mu _{1}\right) \right] & E \left[ \left( x_{2}-\mu _{2}\right) ^{2}\right] \end{matrix} \right] = [/math]


[math] \left[ \begin{matrix} \sigma _{1}^{2} & \sigma _{12} \\ \sigma _{21} & \sigma _{2}^{2} \end{matrix} \right] [/math]


ogólnie


[math] S=\left[ \begin{matrix} \upsilon ar(x_{1}) & co\upsilon (x_{1},x_{2}) & ... & co\upsilon (x_{1},x_{k}) \\ co\upsilon (x_{2},x_{1}) & \upsilon ar(x_{2}) & ... & co\upsilon (x_{2},x_{k}) \\ ... & ... & ... & ... \\ co\upsilon \left( x_{k},x_{1}\right) & co\upsilon (x_{k},x_{2}) & ... & \upsilon ar(x_{k}) \end{matrix} \right] [/math]



Analiza wariancji wielu zmiennych (Multivariate ANalysis of VAriance — MANOVA)

Wcześniej rozpatrywaliśmy podział na grupy pomiarów opisanych jedną zmienną (analiza wariancji jednej zmiennej). Jeśli zmienna losowa [math]X[/math] jest opisana wektorem ([math]x_{1},...,x_{k})[/math], wartość wektorem o tym samym wymiarze: ([math] \mu _{1},...,\mu _{k})[/math], to w miejsce wariancji mamy do czynienia z macierzą kowariancji:


[math] S=\left[ \begin{matrix} \upsilon ar(x_{1}) & co\upsilon (x_{1},x_{2}) & ... & co\upsilon (x_{1},x_{k}) \\ co\upsilon (x_{2},x_{1}) & \upsilon ar(x_{2}) & ... & co\upsilon (x_{2},x_{k}) \\ ... & ... & ... & ... \\ co\upsilon \left( x_{k},x_{1}\right) & co\upsilon (x_{k},x_{2}) & ... & \upsilon ar(x_{k}) \end{matrix} \right] [/math]


gdzie:


[math] \upsilon ar(x_{i})=\sigma _{x_{i}}=E((x_{i}-\mu _{i})^{2}) [/math]


[math] co\upsilon (x_{i},x_{k})=\sigma _{x_{i},x_{k}}=E((x_{i}-\mu _{i})(x_{k}-\mu _{k})) [/math]


Zakladamy, że dane pochodzą z wielowymiarowego rozkładu normalnego, opisanego macierzą kowariancji [math]S[/math]


[math] \Phi (X)=\frac{1}{\sqrt{(2\pi )^{k}}\sqrt{\left| S\right| }}e^{-\frac{(X-\mu )^{\prime }S^{-1}(X-\mu )}{2}} [/math]


Jeśli [math]X[/math] pochodzą z próby podzielonej na grupy, to podobnie jak w ANOVA możemy skonstruować macierze wariancji wewnątrzgrupowych i międzygrupowych i dowieść, że [math]S=S_{wew}+S_{pom}[/math].

Testujemy hipotezę o równości średnich w grupach

[math] H_0: \mu_1 = \mu_2 = \cdots = \mu_k [/math]

Jako statystykę testową możemy wybrać np. iloraz wyznaczników macierzy [math]S_{wew}[/math] i [math]S[/math], który podlega rozkładowi [math]\Lambda [/math] Wilksa:


[math] \Lambda =\frac{\left| S_{wew}\right| }{\left| S\right| }=\frac{\left| S_{wew}\right| }{\left| S_{wew}+S_{pom}\right| } [/math]

Uczenie (maszynowe, ML) nienadzorowane (unsupervised learning)

Analiza składowych głównych (Principal Components Analysis, PCA)

Jeśli zmienne są bardzo silnie skorelowane, mamy do czynienia z redundancją. Możemy ją zmniejszyć, redukując wymiar danych. W tym celu macierz kowariancji


[math] S=\left[ \begin{matrix} \upsilon ar(x_{1}) & co\upsilon (x_{1},x_{2}) & ... & co\upsilon (x_{1},x_{k}) \\ co\upsilon (x_{2},x_{1}) & \upsilon ar(x_{2}) & ... & co\upsilon (x_{2},x_{k}) \\ ... & ... & ... & ... \\ co\upsilon \left( x_{k},x_{1}\right) & co\upsilon (x_{k},x_{2}) & ... & \upsilon ar(x_{k}) \end{matrix} \right] [/math]


przedstawiamy w postaci diagonalnej


[math] S=\left[ \begin{matrix} r_{11} & r_{12} & ... & r_{1k} \\ r_{21} & r_{22} & ... & r_{2k} \\ ... & ... & ... & ... \\ r_{k1} & r_{k2} & ... & r_{kk} \end{matrix} \right] \left[ \begin{matrix} \lambda _{1} & 0 & ... & 0 \\ 0 & \lambda _{2} & ... & 0 \\ ... & ... & ... & ... \\ 0 & 0 & ... & \lambda _{k} \end{matrix} \right] \left[ \begin{matrix} r_{11} & r_{21} & ... & r_{k1} \\ r_{12} & r_{22} & ... & r_{k2} \\ ... & ... & ... & ... \\ r_{1k} & r_{2k} & ... & r_{kk} \end{matrix} \right] [/math]


Wielkości [math]\lambda _{i}[/math] są rozwiązaniami równania [math]\left| S-\lambda I\right| =0,[/math] a wektor [math]r_{i}[/math] osiami nowego układu współrzędnych. Składowe PCA są liniowymi kombinacjami obserwowanych zmiennych.


Kierunki składowych głównych (PCA) w dwóch wymiarach

Analiza skupień — Cluster Analysis

Wejściem dla tej klasy procedury są nieoznaczone dane, a wyjściem ich podział na grupy. Obecnie metody tego typu określamy czasem jako "unsupervised learning".


Metody polegające na kolejnym łączeniu punktów

Startujemy z N klastrów jednopunktowych, w każdym kroku łączymy najbliższe. Wynikiem działania jest drzewo łączenia, na którym sami musimy wybrać ilość klastrów. Wynik zależy silnie od przyjętych definicji odległości między klastrami oraz definicji odległości między punktami.

Odległości między punktami:

  • Odległość Euklidesowa [math]d(x,y)=\sqrt{\underset{i=1}{\overset{k}{\sum }}(x_{i}-y_{i})^{2}}[/math] (czuła na różne skale cech).
  • Odległość korelacyjna [math]d(x,y)=1-\rho (x,y),[/math] gdzie [math]\rho (x,y)=\frac{\underset{i=1}{\overset{k}{\sum }}(x-\overline{x})(y- \overline{y})}{\sigma _{x}\sigma _{y}} [/math] (znormalizowana do przedziału (0,2), mniejsza im lepiej skorelowane punkty).

Odległości między klastrami:

  • Najbliższego sąsiada (single linkage) - odległość między dwoma najbliższymi elementami klastrów A i B: [math]d(A,B)=\min_{x,y}d(x,y),\ \ \ \ \ x\in A,\ y\in B[/math]
  • (complete linkage ) - odległość między dwoma najbliższymi elementami klastrów A i B: [math]d(A,B)=\max_{x,y}d(x,y),\ \ \ \ \ x\in A,\ y\in B [/math]
  • (centroid) - odległość między środkami klastrów,
  • (average) - średnia odległości, itd...


Metoda K–średnich (K – means )

Wybieramy ilość klastrów, podział dokonywany jest w iteracyjnej procedurze dążącej do minimalizacji stosunku wariancji pomiędzy klastrami do wariancji wewnątrz klastrów — niejako [math]ANOVA[/math] bez ustalonego wstępnie przyporządkowania, maksimum [math] F[/math] poszukiwane drogą przemieszczania elementów między klastrami.