Funkcja systemu: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 106: Linia 106:
 
</math>
 
</math>
  
 +
<!--
 
lub
 
lub
  
Linia 111: Linia 112:
 
H(z) = \mathrm{const} \frac  {\prod_{l=0}^L \left(1-\frac{d_l}{z}\right) }      {\prod_{k=0}^K \left(1-\frac{c_k}{z}\right) } .
 
H(z) = \mathrm{const} \frac  {\prod_{l=0}^L \left(1-\frac{d_l}{z}\right) }      {\prod_{k=0}^K \left(1-\frac{c_k}{z}\right) } .
 
</math>
 
</math>
 +
 +
-->
  
 
<math>H(z)</math> &mdash; funkcja systemu ''(system function)'' pozwala spójnie przedstawić działanie systemu LTI/ARMA realizującego filtrowanie  sygnału <math>x</math>:
 
<math>H(z)</math> &mdash; funkcja systemu ''(system function)'' pozwala spójnie przedstawić działanie systemu LTI/ARMA realizującego filtrowanie  sygnału <math>x</math>:

Wersja z 19:07, 17 lis 2016

AS/ Funkcja systemu

Transformata Z

definiowana jest jako szereg

[math]\mathcal{Z}\{x[n]\} = X(z)= \sum_{n=0}^{\infty} x[n] z^{-n}.[/math]

Dla [math]z=e^{i \omega}[/math] dostajemy Dyskretną Tranformatę Fouriera.

Transformata [math]\mathcal{Z}[/math] jest liniowa

[math]\mathcal{Z}\lbrace a x[n] + b y[n]\rbrace =a X[z] + b Y[z][/math]

a dla przesunięcia w czasie

[math]\mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k}X(z)[/math]

Dowód:

[math]\mathcal{Z}\lbrace x[n-k]\rbrace = \sum_{n=0}^{\infty} x[n-k] z^{-n} [/math]
[math] | j=n-k|[/math]
[math] = \sum_{j=-k}^{\infty} x[j] z^{-(j+k)} = \sum_{j=-k}^{\infty} x[j] z^{-j}z^{-k}} = z^{-k} \sum_{j=-k}^{\infty} x[j] z^{-j}} [/math]

dla systemów przyczynowych [math]x[j][/math] są niezerowe dla [math]j\lt 0[/math], więc

[math]\mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k} \sum_{j=0}^{\infty} x[j] z^{-j}}[/math]


Procesy ARMA

Przykładem systemów liniowych niezmienniczych w czasie są systemy opisane równaniem

[math] \sum_{k=0}^K a_k y[n-k] = \sum_{l=0}^L b_l x[n-l] [/math]

Jest to ogólna postać procesu ARMA -- autoregressive moving average.


Dla [math]L=0[/math] dostajemy proces AR (autoregressive), w którym sygnał na wyjściu [math]y[/math] zależy tylko od [math]K[/math] poprzednich próbek wyjścia [math]y[/math].


Kładąc [math]K=0[/math] dostajemy proces MA (moving average), w którym sygnał na wyjściu [math]y[/math] zależy tylko od [math]L[/math] poprzednich próbek wejścia [math]x[/math].

Funkcja systemu

Zastosujmy do obu stron powyższego równania transformatę[math]\mathcal{Z}[/math]:

[math] \mathcal{Z}\left\{\sum_{k=0}^K a_k y[n-k] \right\} = \mathcal{Z}\left\{ \sum_{l=0}^L b_l x[n-l] \right\} [/math]
[math] \sum_{k=0}^K a_k \mathcal{Z}\left\{ y[n-k]\right\} = \sum_{l=0}^L b_l \mathcal{Z} \left\{x[n-l]\right\} [/math]
[math] \sum_{k=0}^K a_k z^{-k} Y(z) = \sum_{l=0}^L b_l z^{-l} X(z) [/math]
[math] Y(z) \sum_{k=0}^K a_k z^{-k} = X(z) \sum_{l=0}^L b_l z^{-l} [/math]


Dostajemy:


[math] \frac{Y(z)}{X(z)} \equiv H(z) = \frac{\sum_{l=0}^L b_l z^{-l}}{\sum_{k=0}^K a_k z^{-k}} [/math]


[math]H(z)[/math] — funkcja systemu (system function) pozwala spójnie przedstawić działanie systemu LTI/ARMA realizującego filtrowanie sygnału [math]x[/math]:

[math]Y(z)=H(z) X(z)[/math]