Funkcja systemu: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 1: Linia 1:
 
=[[Analiza_sygnałów_-_lecture|AS/]] Funkcja systemu=
 
=[[Analiza_sygnałów_-_lecture|AS/]] Funkcja systemu=
 +
  
 
==Transformata Z==
 
==Transformata Z==
Linia 44: Linia 45:
 
Dostajemy:
 
Dostajemy:
  
<equation id="eq:39">
+
 
<math>
+
:<math>
 
\frac{Y(z)}{X(z)} \equiv H(z) = \frac{\sum_{l=0}^L b_l z^{-l}}{\sum_{k=0}^K a_k z^{-k}}
 
\frac{Y(z)}{X(z)} \equiv H(z) = \frac{\sum_{l=0}^L b_l z^{-l}}{\sum_{k=0}^K a_k z^{-k}}
 
</math>
 
</math>
</equation>
+
 
 
lub
 
lub
  
<math>
+
:<math>
H(z) = \mathrm{const} \frac  {\prod_{l=0}^L \left(1-\frac{d_l}{z}\right) }      {\prod_{k=0}^K \left(1-\frac{c_k}{z}\right) }
+
H(z) = \mathrm{const} \frac  {\prod_{l=0}^L \left(1-\frac{d_l}{z}\right) }      {\prod_{k=0}^K \left(1-\frac{c_k}{z}\right) } .
 
</math>
 
</math>
  
 
<math>H(z)</math> &mdash; funkcja systemu ''(system function)'' .
 
<math>H(z)</math> &mdash; funkcja systemu ''(system function)'' .
 
<references/>
 
<references/>

Wersja z 13:36, 25 paź 2015

AS/ Funkcja systemu

Transformata Z

definiowana jest jako szereg

[math]\mathcal{Z}\{x[n]\} = X(z)= \sum_{n=0}^{\infty} x[n] z^{-n}.[/math]

Dla [math]z=e^{i \omega}[/math] dostajemy Dyskretną Tranformatę Fouriera, ale tutaj przyjmujemy ogólną postać.


Transformata [math]\mathcal{Z}[/math] jest liniowa

[math]\mathcal{Z}\lbrace a x[n] + b y[n]\rbrace =a X[z] + b Y[z][/math]

a dla przesunięcia w czasie

[math]\mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k}X(z)[/math]

Funkcja systemu

Systemy liniowe niezmiennicze w czasie dają się opisać z pomocą liniowych równań różnicowych o stałych współczynnikach:

[math] \sum_{k=0}^K a_k y[n-k] = \sum_{l=0}^L b_l x[n-l] [/math]


Zastosujmy do obu stron powyższego równania transformatę Z:

[math] \mathcal{Z}\left\{\sum_{k=0}^K a_k y[n-k] \right\} = \mathcal{Z}\left\{ \sum_{l=0}^L b_l x[n-l] \right\} [/math]
[math] \sum_{k=0}^K a_k \mathcal{Z}\left\{ y[n-k]\right\} = \sum_{l=0}^L b_l \mathcal{Z} \left\{x[n-l]\right\} [/math]
[math] \sum_{k=0}^K a_k z^{-k} Y(z) = \sum_{l=0}^L b_l z^{-l} X(z) [/math]
[math] Y(z) \sum_{k=0}^K a_k z^{-k} = X(z) \sum_{l=0}^L b_l z^{-l} [/math]


Dostajemy:


[math] \frac{Y(z)}{X(z)} \equiv H(z) = \frac{\sum_{l=0}^L b_l z^{-l}}{\sum_{k=0}^K a_k z^{-k}} [/math]

lub

[math] H(z) = \mathrm{const} \frac {\prod_{l=0}^L \left(1-\frac{d_l}{z}\right) } {\prod_{k=0}^K \left(1-\frac{c_k}{z}\right) } . [/math]

[math]H(z)[/math] — funkcja systemu (system function) .