Z Brain-wiki
Skocz do: nawigacja, szukaj

Wnioskowanie_Statystyczne_-_wykład


Rozkłady prawdopodobieństwa

Rozkład prawdpopodobieństwa — zgodnie z nazwą — będzie funkcją określającą, jak prawdopodobieństwo rozkłada się pomiędzy możliwe wyniki danego doświadczenia. Mieliśmy już z nim do czynienia w pierwszej części książki, rysunek 1 przypomina niektóre z tych przypadków.

(a) rozkład liczby jedynek uzyskany z 10 tysięcy repróbkowań ze zwracaniem (bootstrap) próby 18 jedynek i 82 zer; (b) liczba trafień na 10 rzutów do kosza, przy średnim prawdopodobieństwie trafienia 0,6

Nie są to prawdopodobieństwa, gdyż nie spełniają aksjomatu (0\leq P(A)\leq 1), który wraz z aksjomatem (P(\Omega)=1) możemy spełnić dzieląc liczbę wystąpień każdego przypadku przez całkowitą liczbę eksperymentów — wtedy suma wszystkich prawdopodobieństw (czyli P(\Omega)) wyniesie 1. Przykład tak znormalizowanego dyskretnego rozkładu prawdopodobieństwa przedstawia rysunek rysunek 2(a).

Pozostaje jeszcze problem formalny: występujące w klasycznej teorii funkcje nie są określone na zdarzeniach, tylko na liczbach. Przejście od zdarzeń do odpowiadających im liczb wymaga pojęcia zmiennej losowej – odwzorowania X(.) z przestrzeni zdarzeń do przestrzeni liczb rzeczywistych. Na przykład w doświadczeniu polegającym na rzucaniu kostką zmienna losowa przypisze liczbę 4 przypadkowi, w którym na górnej ściance rzuconej kostki widać cztery kropki.

Liczby (czyli zmienne losowe) są już pełnoprawnymi argumentami funkcji, ale z definicją rozkładu prawdopodobieństwa będzie jeszcze trochę kłopotu, jeśli wyniki eksperymentu będą pochodzić z ciągłych przedziałów zmiennej losowej, a nie, jak w przykładach z rysunku rysunek 1, ze zbioru dyskretnego.

Rozkłady ciągłe — gęstość prawdopodobieństwa

(a) dyskretny rozkład prawdopodobieństw wyników rzutu kostką; (b) ciągły rozkład prawdopodobieństwa dla liczb rzeczywistych z przedziału od zera do jednego.

Z rozkładem ciągłym mieliśmy do czynienia, gdy używaliśmy generatora liczb losowych — losował on z równym prawdopodobieństwem liczby rzeczywiste z przedziału od zera do jednego. Funkcja przypisująca równe prawdopodobieństwa liczbom od zera do jednego powinna wyglądać jak na rysunku 2(b). A jednak coś się tu nie zgadza...

Zacznijmy od rozkładu dyskretnego, czyli wykresu 2(a). Prawdopodobieństwo dla zmiennej losowej (teraz nie jest to już formalnie zdarzenie) wynoszącej na przykład 2 odczytujemy jako wynoszące 0,167. Czyli mniejsze od 1 i większe od zera. Suma prawdopodobieństw dla wszystkich możliwych wartości zmiennej losowej wyniesie 1 — wszystko zgadza się z aksjomatami definicji prawdopodobieństwa.

Teraz spróbujmy z wykresu po prawej stronie odczytać wartość prawdopodobieństwa wylosowania jakiejś liczby spomiędzy 0 i 1. Jeden? To oznacza pewność — niemożliwe. Na osi y powinna występować jakaś znacznie mniejsza wartość... Ale jaka?

Zastanówmy się: niezależnie od tego, jak małą (niezerową i nieujemną) wartość przyjmiemy dla prawdopodobieństwa wylosowania dowolnej liczby z tego przedziału, to gdy zaczniemy je sumować dla wszystkich możliwych wyników, których na odcinku (0, 1) jest wszak nieskończenie wiele, zawsze dostaniemy więcej niż jeden. Najwyraźniej tak się nie da.

Widać już, że sumę będziemy musieli zastąpić całką — jest to właśnie graniczny przypadek sumy. W tym układzie aksjomat P(\Omega)=1, który dla przypadku dyskretnego wyrażał się sumą

 \sum_i P(X=x_i) = 1,

teraz będzie wyrażał się całką

 \int p(x) dx = 1,

gdzie prawdopodobieństwo P zastąpiła, z przyczyn, które staną się jasne za chwilę, gęstość prawdopodobieństwa p. Łatwo sprawdzić, że całka rozkładu z rys. 2 spełnia ten warunek. Jednak pozostaje problem odczytywania wartości prawdopodobieństwa dla konkretnej wartości zmiennej losowej.

Przypomnijmy sobie, że symulując rzuty monetą korzystaliśmy z faktu, że prawdopodobieństwo wylosowania liczby mniejszej niż \frac1 2 wynosi 0,5. Zdefiniujmy więc dystrybuantę prawdopodobieństwa zmiennej losowej X jako prawdopodobieństwo wystąpienia któregokolwiek ze zdarzeń, dla których zmienna losowa przyjmuje wartości mniejsze od x:

 F(x)=P[X \leq x].

Będzie to oczywiście funkcja niemalejąca, dążąca do zera dla małych x i do jednego dla dużych. Dla rozkładu z rysunku 2(b) dystrybuanta będzie wyglądać jak na rysunku 3.

Dystrybuanta ciągłej zmiennej losowej o równym prawdopodobieństwie na przedziale (0, 1).

Dopiero teraz gęstość prawdopodobieństwa zmiennej losowej określimy jako pochodną dystrybuanty

p(x)=\frac{d F(x)}{dx}=\frac{P[x\leq X\leq x+dx]}{dx}.

Dlaczego gęstość, a nie po prostu rozkład prawdopodobieństwa, jak w przypadku dyskretnym? Właśnie ze względu na problemy z odczytem prawdopodobieństwa dla konkretnej wartości zmiennej. Na podobny problem trafiamy np. w fizyce, próbując obliczyć masę punktu. Masa to iloczyn (całka) gęstości i objętości, a punkt ma zerową objętość. Aby otrzymać niezerową masę, gęstość materii musimy scałkować w jakimś niezerowym obszarze — nie można przyjąć za masę gęstości materii w danym punkcie. Tak samo w przypadku ciągłych rozkładów gęstości prawdopodobieństwa, prawdopodobieństwo możemy obliczyć tylko dla niezerowego przedziału zmiennej losowej, a wartość odczytywaną dla konkretnej wartości zmiennej losowej interpretujemy jako gęstość.