Szereg Fouriera: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 5: Linia 5:
  
 
<equation id="eq:15">
 
<equation id="eq:15">
<math>  
+
<math> \displaystyle
 
s(t) =\sum_{n=-\infty}^{+\infty} c_n e^{-i\frac{2\pi n}{T} t},
 
s(t) =\sum_{n=-\infty}^{+\infty} c_n e^{-i\frac{2\pi n}{T} t},
 
</math>
 
</math>
Linia 14: Linia 14:
  
 
<equation id="eq:16">
 
<equation id="eq:16">
<math>
+
<math> \displaystyle
 
c_{n} = \frac{1}{T}\int_{0}^{T} s(t) e^{i \frac{2\pi n}{T} t} d t  
 
c_{n} = \frac{1}{T}\int_{0}^{T} s(t) e^{i \frac{2\pi n}{T} t} d t  
 
</math>
 
</math>
Linia 21: Linia 21:
 
<br>
 
<br>
  
'''Dowód''' powyższego wzoru na współczynniki rozwinięcia
+
'''Dowód''': mnożymy obie strony pierwszego równania przez  
Fouriera:
 
 
 
 
 
Mnożymy obie strony <xr id="eq:15">równania</xr> przez  
 
 
<math>e^\frac{2\pi i k t}{T}</math>  
 
<math>e^\frac{2\pi i k t}{T}</math>  
 
i całkujemy po <math>dt</math> od <math>0</math> do <math>T</math>:  
 
i całkujemy po <math>dt</math> od <math>0</math> do <math>T</math>:  
  
 
+
<math> \displaystyle
<math>  
 
 
\int_0^T s(t) e^{{{2\pi i k t}\over{T}}} dt =  
 
\int_0^T s(t) e^{{{2\pi i k t}\over{T}}} dt =  
 
\sum_{n=-\infty}^{+\infty} \int_0^T c_n e^{i{{2 \pi (k-n)}\over{T}} t}dt  
 
\sum_{n=-\infty}^{+\infty} \int_0^T c_n e^{i{{2 \pi (k-n)}\over{T}} t}dt  
 
</math>
 
</math>
 
   
 
   
 
 
Całki po prawej stronie znikają dla <math>k \ne n</math>.  
 
Całki po prawej stronie znikają dla <math>k \ne n</math>.  
 
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
| znikanie całki <math>\int_0^T e^{i{{2 \pi (k-n)}\over{T}} t}dt </math>
 
| znikanie całki <math>\int_0^T e^{i{{2 \pi (k-n)}\over{T}} t}dt </math>
 
|-
 
|-
|oznaczamy <math>m = k-n</math>
+
|oznaczmy <math>m = k-n, m \in \mathbb N</math>
 
 
 
<math>\displaystyle \int_0^T e^{i{{2 \pi m t}\over{T}} t}dt =  
 
<math>\displaystyle \int_0^T e^{i{{2 \pi m t}\over{T}} t}dt =  
 
\frac{i T}{2 \pi m} e^{i \frac{2 \pi m t}{T} }\bigg|_0^T =  
 
\frac{i T}{2 \pi m} e^{i \frac{2 \pi m t}{T} }\bigg|_0^T =  
 
\frac{i T}{2 \pi m} \big( e^{i 2 \pi m} - 1 \big) =
 
\frac{i T}{2 \pi m} \big( e^{i 2 \pi m} - 1 \big) =
\frac{i T}{2 \pi m} \big( \cos(2 \pi m) - i \sin(2 \pi m) \big)
+
\frac{i T}{2 \pi m} \big( \cos(2 m \pi) - i \sin(2 m \pi) \big)
 
</math>
 
</math>
 
 
|}
 
|}
 
 
 
 
Jedyny niezerowy  
 
Jedyny niezerowy  
 
wyraz dla <math>k = n</math> wynosi <math>\int_0^T c_n dt</math>, czyli <math>c_n T</math> (bo <math>e^0=1</math>).  
 
wyraz dla <math>k = n</math> wynosi <math>\int_0^T c_n dt</math>, czyli <math>c_n T</math> (bo <math>e^0=1</math>).  
   
+
<math> \displaystyle
 +
\int_0^T s(t) e^{{{2\pi i k t}\over{T}}} dt = c_n T
 +
</math>
  
 
Oznacza to, że każdą funkcję okresową możemy przedstawić w postaci sumy sinusów i kosinusów z odpowiednimi wagami — przypomnijmy <math>e^{i \phi} = \cos(\phi) + i \sin(\phi)</math>. Wagi <math>c_n</math> możemy traktować jako względny udział odpowiadających im częstości.
 
Oznacza to, że każdą funkcję okresową możemy przedstawić w postaci sumy sinusów i kosinusów z odpowiednimi wagami — przypomnijmy <math>e^{i \phi} = \cos(\phi) + i \sin(\phi)</math>. Wagi <math>c_n</math> możemy traktować jako względny udział odpowiadających im częstości.

Wersja z 15:58, 9 paź 2024

AS/ Szereg Fouriera

Sygnał okresowy (o okresie [math]T[/math]) można przedstawić w postaci szeregu Fouriera:


[math] \displaystyle s(t) =\sum_{n=-\infty}^{+\infty} c_n e^{-i\frac{2\pi n}{T} t}, [/math]


gdzie

[math] \displaystyle c_{n} = \frac{1}{T}\int_{0}^{T} s(t) e^{i \frac{2\pi n}{T} t} d t [/math]


Dowód: mnożymy obie strony pierwszego równania przez [math]e^\frac{2\pi i k t}{T}[/math] i całkujemy po [math]dt[/math] od [math]0[/math] do [math]T[/math]:

[math] \displaystyle \int_0^T s(t) e^{{{2\pi i k t}\over{T}}} dt = \sum_{n=-\infty}^{+\infty} \int_0^T c_n e^{i{{2 \pi (k-n)}\over{T}} t}dt [/math]

Całki po prawej stronie znikają dla [math]k \ne n[/math].

Jedyny niezerowy wyraz dla [math]k = n[/math] wynosi [math]\int_0^T c_n dt[/math], czyli [math]c_n T[/math] (bo [math]e^0=1[/math]). [math] \displaystyle \int_0^T s(t) e^{{{2\pi i k t}\over{T}}} dt = c_n T [/math]

Oznacza to, że każdą funkcję okresową możemy przedstawić w postaci sumy sinusów i kosinusów z odpowiednimi wagami — przypomnijmy [math]e^{i \phi} = \cos(\phi) + i \sin(\phi)[/math]. Wagi [math]c_n[/math] możemy traktować jako względny udział odpowiadających im częstości.


Tożsamość Parsevala dla szeregów Fouriera

[math] \frac{1}{T} \int_0^T \left| s(t) \right|^2 d t = \sum_{n=-\infty}^{\infty} \left| c_n \right|^2 [/math]


Dowód:

[math] \frac{1}{T} \int_0^T \left| s(t) \right|^2 d t =[/math]

[math] \frac{1}{T} \int_0^T s(t) \overline{s(t)} \,d t \; = [/math]

[math]\frac{1}{T} \int_0^T \left( \sum_{n=-\infty}^{+\infty} c_n e^{-i\frac{2\pi t}{T} n} \right) \left( \sum_{m=-\infty}^{+\infty} \overline{c_m} e^{i\frac{2\pi t}{T} m} \right) d t =[/math]


[math] \left\| \; \int_0^T e^{-i\frac{2\pi t}{T} n} e^{i\frac{2\pi t}{T} m}= \delta_{(m-n)} T \;\right\|\; =[/math]


[math]\sum_{n = -\infty}^{\infty} c_n \overline{c_n} \;\;= \sum_{n = -\infty}^{\infty} |c_n|^2 [/math]


Energia, moc, widmo

Jeśli sygnałem będzie np. prąd elektryczny, płynący w obwodzie o jednostkowej oporności w czasie od [math]0[/math] do [math]T[/math], to wytracona przez niego energia wyniesie [math]\int_0^T s(t)^2 d t[/math]. W ogólności, biorąc pod uwagę sygnały o wartościach zespolonych, całkowitą energię sygnału definiujemy jako [math]\int_{-\infty}^{\infty} | s(t) |^2 d t[/math]. Moc to oczywiście energia wytracana w jednostce czasu, czyli [math]\frac{1}{T}\int_{0}^{T} | s(t) |^2 d t[/math]. Jak widać z powyższego twierdzenia, dla sygnałów okresowych możemy ją również obliczać jako sumę kwadratów współczynników szeregu Fouriera [math]\sum c_n^2[/math]. Pozwala to interpretować [math]c_n^2[/math] jako moc, niesioną przez odpowiadającą mu częstość. Wykres tej wielkości w zależności od częstości nazywamy widmem mocy sygnału. Dla sygnału okresowego widmo mocy będzie dyskretne (patrz rysunek 1).

Wszystko to nie tyczy się li tylko sygnałów czysto okresowych; z sygnału nie-okresowego [math]s(t)[/math], określonego na skończonym przedziale [math][0, T][/math], możemy utworzyć sygnał okresowy [math]s_T(t)[/math]:

Klasyczna rys 1 5.jpg
[math]\begin{matrix} s_T(t)=s(t),\;t\in[0,T] \\ s_T(t+nT)=s(t),\;n=1,2,\ldots \end{matrix}[/math]

tożsamy z [math]s(t)[/math] w przedziale [math][0, T][/math], który można już przedstawić w postaci sumy 1.


Od góry, kolejno: funkcja [math]\Theta[/math] (równanie %i 4), "uzupełniona" do funkcji okresowej według wzoru %i 3, pierwszych 30 współczynników szeregu Fouriera, kwadraty współczynników szeregu Fouriera — dyskretne widmo, pierwszy wyraz rozwinięcia Fouriera, sumy pierwszych 10, 50, 500 i 5000 wyrazów rozwinięcia (5). Jak widać, najtrudniejsza do wyrażenia z pomocą funkcji trygonometrycznych jest nieciągłość funkcji [math]\theta(t)[/math] w punktach [math]\left\{\pm \frac{k}{2}, k \in N \right\}[/math]; niejednorodna zbieżność szeregów Fouriera w tych rejonach nosi nazwę efektu Gibbsa.