Estymacja widma na podstawie FT: Różnice pomiędzy wersjami

Z Brain-wiki
 
(Nie pokazano 30 pośrednich wersji utworzonych przez tego samego użytkownika)
Linia 1: Linia 1:
===Dyskretna Transformata Fouriera (DFT) ===
 
  
W praktycznych zastosowaniach mamy do czynienia z sygnałami próbkowanymi o skończonej długości. Transformata Fouriera działąjąca na takich sygnałach nazywana jest Dyskretną Transformatą Fouriera, a algorytm najczęściej wykorzystywany do jej obliczania to szybka trasnsformata Fouriera (fast Fourier transform FFT).
 
Formułę na współczynniki FFT można otrzymać z [[Szereg_Fouriera|szeregu Fouriera]]. Załóżmy, że sygnał który chcemy przetransformować składa się z <math>N</math> próbek.
 
  
<math> s =\{ s[0],\dots,s[n],\dots s[N-1]\}</math>
+
=[[Analiza_sygnałów_-_lecture|AS/]] Estymacja widma na podstawie Transformaty Fouriera=
  
i próbki pobierane były co <math>T_s</math> sekund. Zakładamy, że analizowany sygnał <math>s</math>  to jeden okres nieskończonego sygnału o  okresie  <math>T=N\cdot T_s</math>. Wprowadźmy oznaczenie:
+
==Dyskretna Transformata Fouriera (DFT)==
  
<math>s[n]=s(nT_s)</math>.  
+
W praktycznych zastosowaniach mamy do czynienia z sygnałami próbkowanymi o skończonej długości. Transformata Fouriera działająca na takich sygnałach nazywana jest Dyskretną Transformatą Fouriera, a algorytm najczęściej wykorzystywany do jej obliczania to szybka trasnsformata Fouriera (fast Fourier transform FFT).
 +
Formułę na współczynniki transformaty Fouriera można otrzymać z [[Szereg_Fouriera|szeregu Fouriera]]. Załóżmy, że sygnał który chcemy przetransformować składa się z <math>N</math> próbek.
  
Przepiszmy wzór na współczynniki szeregu Fouriera. Ponieważ sygnał jest teraz dyskretny, całka zamieni się na sumę Riemanna: pole będzie sumą pól prostokątów o bokach równych wartości funkcji podcałkowej w zadanych punktach <math>x(nT_s)exp(2i{\pi}knT_s/T)</math> i odległości między punktami <math>T_s</math>:
+
<math> s =\{ s[0],\dots,s[n],\dots s[N-1]\}</math>  
  
<math>
+
i próbki pobierane były co <math>T_s</math> sekund. Zakładamy, że analizowany sygnał <math>s</math>  to jeden okres nieskończonego sygnału o  okresie <math>T=N\cdot T_s</math>. Wprowadźmy oznaczenie:
  S[k] = \frac{1}{NT_s}\sum_{n=0}^{N-1}s(nT_s)e^{2i\pi\frac{knT_s}{NT_s}}T_s = \frac{1}{N}\sum_{n=0}^{N-1}s[n]e^{2i{\pi}\frac{kn}{N}}
 
</math>
 
  
 +
<math>s[n]=s(n T_s)</math>.
  
DFT zaimplementowana w <tt>numpy.fft</tt> jest określona jako:
+
Przepiszmy wzór na współczynniki [[Szereg_Fouriera|szeregu Fouriera]]
:<math>A[k] =  \sum_{m=0}^{n-1} a[m] \exp\left\{-2\pi i{mk \over n}\right\}      \qquad k = 0,\ldots,n-1.
 
</math>
 
  
DFT jest w ogólności zdefiniowane dla zespolonych argumentów i zwraca zespolone współczynniki.
 
Odwrotna dyskretna transformata Fouriera jest zdefiniowana jako:
 
:<math> a[m] = \frac{1}{n}\sum_{k=0}^{n-1}A[k]\exp\left\{2\pi i{mk\over n}\right\}
 
      \qquad m = 0,\ldots,n-1.
 
</math>
 
  
Zwróćmy uwagę, że różni się ona do transformaty ''wprost'' jedynie znakiem w exponencie i normalizacją <math>1/n</math>.
+
<math>
 
+
c_{k} = \frac{1}{T}\int_{0}^{T} s(t) e^\frac{2\pi i k t}{T} d t
 
 
===Okienkowanie a widmo mocy: periodogram===
 
Przypomnijmy wzór na dyskretną transformatę Fouriera [http://haar.zfb.fuw.edu.pl/edu/index.php/%C4%86wiczenia_2 DFT] zaimplementowaną w FFT:
 
 
 
:<math>S[k] = \sum_{n=0}^{n-1} s[n] \exp\left\{-2\pi i{nk \over N}\right\}       \qquad k = 0,\ldots,N-1.
 
 
</math>
 
</math>
  
  
Na podstawie twierdzenia [[Nieparametryczne_widmo_mocy#Twierdzenie_Parsevala|Parsevala]] możemy policzyć widmo mocy jako:
+
Ponieważ sygnał jest teraz dyskretny, całka zamieni się na sumę pól prostokątów o bokach równych wartości funkcji podcałkowej w zadanych punktach <math>x(nT_s)e^{(2i{\pi}knT_s/T)}</math> i odległości między punktami <math>T_s</math>:
<math>
 
P[k] = \frac{1}{N} \left|S[k]\right|^2
 
</math>
 
  
Jeśli do liczenia mocy chcielibyśmy posłużyć się techniką okiennkowania sygnału, to powinniśmy używać okienek znormalizowanych, czyli takich których energia jest równa 1, wtedy mnożenie przez okienko nie zaburzy estymaty energii sygnału.
 
  
Aby policzyć widmo mocy sygnału z zastosowaniem okienek wprowadzimy następujące symbole:
 
* sygnał: <math>s[n]</math>
 
* okienko: <math> w[n]</math>
 
* okienko znormalizowane: <math> \hat w[n] = \frac{1}{\sqrt{\sum_{n=0}^{N-1} (w[n])^2}}w[n]</math>
 
<!--(w szczególnym przypadku okienka prostokątnego normalizacja ta daje <math>1/N^2</math> występujące we wzorze na moc)-->
 
* widmo mocy sygnału okienkowanego:
 
 
<math>
 
<math>
P[k] = \frac{1}{\sum_{n=0}^{N-1} (w[n])^2} \left|\sum_{n=0}^{N-1} s[n]w[n] e^{i\frac{2 \pi }{N} k n}\right|^2
+
\hat{s}[k] = \frac{1}{NT_s}\sum_{n=0}^{N-1}s(nT_s)e^{2i\pi\frac{knT_s}{NT_s}} \; T_s = \frac{1}{N}\sum_{n=0}^{N-1}s[n]e^{2i{\pi}\frac{kn}{N}}
 
</math>
 
</math>
  
  
  
===Praktyczna estymacja widma Fourierowskiego sygnałów===
+
==Praktyczna estymacja widma Fourierowskiego sygnałów==
  
Dla sygnałów dyskretnych obliczamy Dyskretną Transformatę Fouriera (omawianą szerzej na [[Ćwiczenia_2#Dyskretna_Transformata_Fouriera_.28DFT.29|ćwiczeniach]]). Kwadrat jej modułu to inaczej periodogram, czyli estymata geśtości widmowej mocy dla sygnałów dyskretnych.  
+
Dla sygnałów dyskretnych obliczamy Dyskretną Transformatę Fouriera (omawianą też szerzej na [[Ćwiczenia_2#Dyskretna_Transformata_Fouriera_.28DFT.29|ćwiczeniach]]). Kwadrat jej modułu to inaczej periodogram, czyli estymata gęstości widmowej mocy dla sygnałów dyskretnych.  
  
 
Sygnały z którymi mamy do czynienia w praktyce są nie tylko dyskretne, ale też skończone.
 
Sygnały z którymi mamy do czynienia w praktyce są nie tylko dyskretne, ale też skończone.
 
Obliczanie transformaty Fouriera dla skończonego odcinka niesie ze
 
Obliczanie transformaty Fouriera dla skończonego odcinka niesie ze
sobą dodatkowe komplikacje.  Znamy wartości sygnału <math>x[n]</math>
+
sobą dodatkowe komplikacje.  Znamy wartości sygnału <math>s[n]</math>
 
dla <math>i=1\ldots N</math>. Odpowiada to iloczynowi sygnału
 
dla <math>i=1\ldots N</math>. Odpowiada to iloczynowi sygnału
 
<math>\left\{s[n]\right\}_{n\in\mathbb{Z}}</math> z oknem prostokątnym
 
<math>\left\{s[n]\right\}_{n\in\mathbb{Z}}</math> z oknem prostokątnym
Linia 76: Linia 51:
 
W efekcie [[Twierdzenia_o_splocie_i_o_próbkowaniu_(aliasing)|(patrz twierdzenie o splocie)]] otrzymujemy splot transformaty Fouriera
 
W efekcie [[Twierdzenia_o_splocie_i_o_próbkowaniu_(aliasing)|(patrz twierdzenie o splocie)]] otrzymujemy splot transformaty Fouriera
 
sygnału (nieskończonego) z transformatą Fouriera okna
 
sygnału (nieskończonego) z transformatą Fouriera okna
<math>\hat{w}_p[k]</math>. Na przykład dla okna prostokątnego będzie to funkcja postaci <math>sin(x)/x</math>, która może wprowadzić w widmie sztuczne oscylacje, które mylnie możemy zidentyfikować z pikami widma. Dlatego w praktyce stosujemy okna o
+
<math>\hat{w}_p[k]</math>. Na przykład dla okna prostokątnego będzie to funkcja postaci <math>sin(x)/x</math>, która może wprowadzić w widmie sztuczne oscylacje, które mylnie możemy zidentyfikować z pikami widma. Dlatego w praktyce stosujemy okna o łagodniejszym przebiegu transformaty Fouriera. Czyli:
łagodniejszym przebiegu transformaty Fouriera. Czyli:
+
#Obliczamy iloczyn sygnału <math>s[n]</math> z wybranym oknem <math>w[n]</math>
#Obliczamy iloczyn sygnału <math>s[n]</math> z wybranym oknem <math>w[n]</math>, dopasowanym do jego rozmiaru
 
 
#Obliczamy periodogram sygnału <math>s[n] w[n]</math>
 
#Obliczamy periodogram sygnału <math>s[n] w[n]</math>
  
Przy założeniu stacjonarności sygnału możemy obliczyć widmo [[Nieparametryczne_widmo_mocy#Metoda_Welcha|omawianą na ćwiczeniach]] metodą Welcha, według której dzielimy sygnał na zachodzące na siebie odcinki, każdy odcinek mnożymy przez okno <math>w[n]</math> po czy otrzymane widma uśredniamy. W ten sposób dla każdej częstości mamy po kilka estymat mocy widmowej, wyliczonych z kolejnych odcinków, co pozwala na oszacowanie błędu estymaty.
+
 
 +
W ogólnym przypadku, biorąc pod uwagę normalizację okna
 +
 
 +
<math>w[n] = \frac{1}{\sqrt{\sum_{n=0}^{N-1} (w[n])^2}}w[n]</math>
 +
 
 +
<!--(w szczególnym przypadku okienka prostokątnego normalizacja ta daje <math>1/N^2</math> występujące we wzorze na moc)-->
 +
 
 +
dostajemy widmo mocy sygnału okienkowanego:
 +
 
 +
<math>
 +
P[k] = \frac{1}{\sum_{n=0}^{N-1} (w[n])^2}  \left|\sum_{n=0}^{N-1} s[n]w[n] e^{i\frac{2 \pi }{N} k n}\right|^2
 +
</math>
 +
 
 +
Przy założeniu stacjonarności sygnału możemy obliczyć widmo [[Nieparametryczne_widmo_mocy#Metoda_Welcha|testowaną na ćwiczeniach]] metodą Welcha, według której dzielimy sygnał na zachodzące na siebie odcinki, każdy odcinek mnożymy przez okno <math>w[n]</math> po czy otrzymane widma uśredniamy. W ten sposób dla każdej częstości mamy po kilka estymat mocy widmowej, wyliczonych z kolejnych odcinków, co pozwala na oszacowanie błędu estymaty.
 +
 
 +
 
 +
 
 +
<div align="right">
 +
[[Twierdzenia_o_splocie_i_o_próbkowaniu_(aliasing)|⬅]] [[Analiza_sygnałów_-_wykład|⬆]] [[Model_autoregresyjny_(AR)|⮕]]
 +
</div>

Aktualna wersja na dzień 10:14, 8 lis 2024


AS/ Estymacja widma na podstawie Transformaty Fouriera

Dyskretna Transformata Fouriera (DFT)

W praktycznych zastosowaniach mamy do czynienia z sygnałami próbkowanymi o skończonej długości. Transformata Fouriera działająca na takich sygnałach nazywana jest Dyskretną Transformatą Fouriera, a algorytm najczęściej wykorzystywany do jej obliczania to szybka trasnsformata Fouriera (fast Fourier transform FFT). Formułę na współczynniki transformaty Fouriera można otrzymać z szeregu Fouriera. Załóżmy, że sygnał który chcemy przetransformować składa się z [math]N[/math] próbek.

[math] s =\{ s[0],\dots,s[n],\dots s[N-1]\}[/math]

i próbki pobierane były co [math]T_s[/math] sekund. Zakładamy, że analizowany sygnał [math]s[/math] to jeden okres nieskończonego sygnału o okresie [math]T=N\cdot T_s[/math]. Wprowadźmy oznaczenie:

[math]s[n]=s(n T_s)[/math].

Przepiszmy wzór na współczynniki szeregu Fouriera


[math] c_{k} = \frac{1}{T}\int_{0}^{T} s(t) e^\frac{2\pi i k t}{T} d t [/math]


Ponieważ sygnał jest teraz dyskretny, całka zamieni się na sumę pól prostokątów o bokach równych wartości funkcji podcałkowej w zadanych punktach [math]x(nT_s)e^{(2i{\pi}knT_s/T)}[/math] i odległości między punktami [math]T_s[/math]:


[math] \hat{s}[k] = \frac{1}{NT_s}\sum_{n=0}^{N-1}s(nT_s)e^{2i\pi\frac{knT_s}{NT_s}} \; T_s = \frac{1}{N}\sum_{n=0}^{N-1}s[n]e^{2i{\pi}\frac{kn}{N}} [/math]


Praktyczna estymacja widma Fourierowskiego sygnałów

Dla sygnałów dyskretnych obliczamy Dyskretną Transformatę Fouriera (omawianą też szerzej na ćwiczeniach). Kwadrat jej modułu to inaczej periodogram, czyli estymata gęstości widmowej mocy dla sygnałów dyskretnych.

Sygnały z którymi mamy do czynienia w praktyce są nie tylko dyskretne, ale też skończone. Obliczanie transformaty Fouriera dla skończonego odcinka niesie ze sobą dodatkowe komplikacje. Znamy wartości sygnału [math]s[n][/math] dla [math]i=1\ldots N[/math]. Odpowiada to iloczynowi sygnału [math]\left\{s[n]\right\}_{n\in\mathbb{Z}}[/math] z oknem prostokątnym [math]w_p[k][/math]:

[math] w_p[k]=\left\{\begin{array}{rl} 1 & \mathrm{dla} \;k=1 .. N\\ 0 & \mathrm{dla} \;k\lt 0 \vee k\gt N\\ \end{array} \right. [/math]

W efekcie (patrz twierdzenie o splocie) otrzymujemy splot transformaty Fouriera sygnału (nieskończonego) z transformatą Fouriera okna [math]\hat{w}_p[k][/math]. Na przykład dla okna prostokątnego będzie to funkcja postaci [math]sin(x)/x[/math], która może wprowadzić w widmie sztuczne oscylacje, które mylnie możemy zidentyfikować z pikami widma. Dlatego w praktyce stosujemy okna o łagodniejszym przebiegu transformaty Fouriera. Czyli:

  1. Obliczamy iloczyn sygnału [math]s[n][/math] z wybranym oknem [math]w[n][/math]
  2. Obliczamy periodogram sygnału [math]s[n] w[n][/math]


W ogólnym przypadku, biorąc pod uwagę normalizację okna

[math]w[n] = \frac{1}{\sqrt{\sum_{n=0}^{N-1} (w[n])^2}}w[n][/math]


dostajemy widmo mocy sygnału okienkowanego:

[math] P[k] = \frac{1}{\sum_{n=0}^{N-1} (w[n])^2} \left|\sum_{n=0}^{N-1} s[n]w[n] e^{i\frac{2 \pi }{N} k n}\right|^2 [/math]

Przy założeniu stacjonarności sygnału możemy obliczyć widmo testowaną na ćwiczeniach metodą Welcha, według której dzielimy sygnał na zachodzące na siebie odcinki, każdy odcinek mnożymy przez okno [math]w[n][/math] po czy otrzymane widma uśredniamy. W ten sposób dla każdej częstości mamy po kilka estymat mocy widmowej, wyliczonych z kolejnych odcinków, co pozwala na oszacowanie błędu estymaty.