Funkcja systemu: Różnice pomiędzy wersjami
(Nie pokazano 89 pośrednich wersji utworzonych przez tego samego użytkownika) | |||
Linia 1: | Linia 1: | ||
− | =[[Analiza_sygnałów_-_lecture|AS/]] | + | =[[Analiza_sygnałów_-_lecture|AS/]] Transformata Z i widmo procesu AR= |
Linia 6: | Linia 6: | ||
==Transformata Z== | ==Transformata Z== | ||
− | + | Jednostronna transformata <math>\mathcal{Z}</math> ciągu liczb <math>x[n]</math> definiowana jest jako funkcja zmiennej <math>z</math> będąca sumą szeregu | |
− | |||
− | |||
− | + | :<math> | |
+ | \displaystyle | ||
+ | \mathcal{Z}\{x[n]\} = X(z)= \sum_{n=0}^{\infty} x[n] z^{-n} | ||
+ | </math> | ||
− | + | czyli np. | |
+ | <math> | ||
+ | \mathcal{Z}\{(2, 7, 3)\} = 2 z + 7 z^{-1} + 3 z^{-2} | ||
+ | </math> | ||
− | |||
− | |||
− | + | Dla <math>z=e^{i \omega}</math> dostajemy Dyskretną Transformatę Fouriera. | |
− | :<math>\ | + | :<math> |
+ | \displaystyle | ||
+ | X(z=e^{i \omega})= \sum_{n=0}^{\infty} x[n] e^{- i \omega n} | ||
</math> | </math> | ||
− | |||
− | + | Transformata <math>\mathcal{Z}</math> jest liniowa | |
− | + | :<math> | |
+ | \displaystyle | ||
+ | \mathcal{Z}\lbrace a x[n] + b y[n]\rbrace =a X[z] + b Y[z] | ||
+ | </math> | ||
− | |||
− | + | a dla przesunięcia w czasie | |
:<math> | :<math> | ||
− | + | \displaystyle | |
+ | \mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k}X(z) | ||
</math> | </math> | ||
− | |||
− | <math> | + | Dowód: |
− | \sum_{ | + | |
+ | :::<math> | ||
+ | \displaystyle | ||
+ | \mathcal{Z}\lbrace x[n-k]\rbrace = \sum_{n=0}^{\infty} x[n-k] z^{-n} \;\; \stackrel{ j \rightarrow n-k }{=} \;\; | ||
+ | \sum_{j=-k}^{\infty} x[j] z^{-(j+k)} = | ||
</math> | </math> | ||
− | + | :::<math> | |
+ | \displaystyle | ||
+ | = \sum_{j=-k}^{\infty} x[j] z^{-j} z^{-k} = z^{-k} \sum_{j=-k}^{\infty} x[j] z^{-j} </math> | ||
+ | |||
+ | |||
+ | dla systemów przyczynowych <math>x[j]</math> są niezerowe dla <math>j>0</math> (por. [https://brain.fuw.edu.pl/edu/index.php/Systemy_liniowe_niezmiennicze_w_czasie_(LTI)#Splot_i_przyczynowo.C5.9B.C4.87 LTI/Splot i przyczynowość]) | ||
+ | więc | ||
− | <math> | + | |
− | \mathcal{Z}\ | + | :<math>\displaystyle |
+ | \mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k} \sum_{j=0}^{\infty} x[j] z^{-j} | ||
</math> | </math> | ||
− | |||
− | <math> | + | Niech <math>x[n]=x_1[n]*x_2[n]</math>; wtedy transformata <math>\mathcal{Z}</math> splotu to iloczyn transformat <math>\mathcal{Z}</math>: |
− | + | ||
− | </math> | ||
− | <math> | + | ::<math> |
− | X(z) = | + | \displaystyle |
− | </math> | + | \mathcal{Z}\{x[n]\} = X(z) = \mathcal{Z}\{x_1[n]\} \mathcal{Z}\{x_2[n]\} = X_1(z) X_2(z) |
+ | </math> | ||
− | |||
− | + | Dowód: | |
− | |||
− | |||
− | + | :::<math> \displaystyle \mathcal{Z}\{x_1(n)*x_2(n)\} = X(z) = </math> | |
− | <math> | + | :::<math> \displaystyle \sum_{n=-\infty}^\infty\left[\sum_{k = -\infty}^\infty x_1(k)x_2(n-k)\right]z^{-n}</math> |
− | \ | ||
− | </math> | ||
− | + | :::<math>= \displaystyle \sum_{k = -\infty}^\infty x_1(k)\left[\sum_{n=-\infty}^\infty x_2(n-k)z^{-n}\right]</math> | |
− | <math> | + | :::<math>= \displaystyle \sum_{k = -\infty}^\infty x_1(k)\left[\sum_{n = -\infty}^\infty x_2(n-k)z^{-(n-k)}z^{-k}\right] |
− | \ | ||
</math> | </math> | ||
− | |||
− | = | + | :::niech <math>n-k = l</math> |
− | + | :::<math> \displaystyle X(z) = \sum_{k = -\infty}^\infty x_1(k)\left[z^{-k}\sum_{l=-\infty}^\infty x_2(l)z^{-l}\right]</math> | |
− | :<math> | ||
− | \sum_{k= | ||
− | </math> | ||
− | + | :::<math>= \displaystyle \sum_{k = -\infty}^\infty x_1(k) z^{-k} X_2(z)</math> | |
+ | :::<math>= \displaystyle X_1(z) X_2(z) </math> | ||
− | |||
− | |||
− | |||
− | + | ==Widmo procesu AR== | |
+ | kładąc <math> a_0 = 1</math>, proces AR o znanych współczynnikach <math>a_i</math> | ||
:<math> | :<math> | ||
− | \ | + | \displaystyle |
+ | x[n] = \sum_{i=1}^M a_i x[n-i] + \epsilon[n] | ||
</math> | </math> | ||
+ | |||
+ | możemy zapisać jako | ||
:<math> | :<math> | ||
− | \sum_{ | + | \displaystyle |
+ | \sum_{i=0}^M a_i x[n-i] = \epsilon[n] | ||
</math> | </math> | ||
+ | |||
+ | Biorąc transformatę Z obu stron | ||
:<math> | :<math> | ||
− | \sum_{ | + | \displaystyle |
+ | \mathcal{Z}\left\{\sum_{i=0}^M a_i x[n-i] \right\} = \mathcal{Z}\left\{ \epsilon[n] \right\} | ||
</math> | </math> | ||
− | + | ||
− | + | ||
+ | dostajemy | ||
+ | |||
+ | <math> | ||
+ | A(z) X(z) = E(z) | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | X(z) = \dfrac{E(z)}{A(z)} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | oznaczając | ||
+ | |||
+ | <math>\displaystyle | ||
+ | H(z) \stackrel{def}{=} A^{-1}(z) = \dfrac{1}{\sum a_i z^{-i}}</math> | ||
+ | |||
+ | dostajemy | ||
+ | |||
+ | <math> | ||
+ | X(z) = H(z) E(z) = \dfrac{E(z)}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \ldots} | ||
</math> | </math> | ||
− | + | podstawiając <math>z=e^{i\omega t}</math> przechodzimy z transformaty <math>\mathcal{Z}</math> do transformaty Fouriera <math>\mathcal{F}(x) = \hat{x}(\omega)</math> | |
:<math> | :<math> | ||
− | \ | + | \hat{x}(\omega) = H(\omega) E(\omega) |
</math> | </math> | ||
− | + | ||
− | + | widmo to kwadrat modułu transformaty Fouriera | |
+ | |||
:<math> | :<math> | ||
− | H( | + | \displaystyle |
+ | \left| \hat{x}(\omega) \right| ^2 = | ||
+ | \left| H(\omega) E(\omega) \right|^2 = \\ | ||
+ | \,\;\;\;\;\;\;\;\;\;\; = \left| H(\omega) \right|^2 \sigma^2 = | ||
+ | \dfrac{\sigma^2}{\left| {A(e^{-i\omega n})} \right|^2} = | ||
+ | \dfrac{\sigma^2}{\left|a_0 + a_1 e^{-i\omega} + a_2 e^{- 2 i\omega} + \ldots \right|^2} | ||
</math> | </math> | ||
− | |||
− | <math> | + | gdzie <math>\sigma^2</math> to wariancja nieskorelowanego szumu <math>\epsilon</math>, którego widmo jest płaskie (nie zależy od częstości) |
+ | |||
+ | |||
− | |||
+ | ==Wielozmienny model AR== | ||
+ | [[Model autoregresyjny (AR)|Model AR]] opisuje wartość | ||
+ | sygnału w chwili <math>t</math> jako kombinację liniową jego wartości | ||
+ | w chwilach poprzednich (oraz szumu). W przypadku wielowymiarowym | ||
+ | możemy włączyć do tego opisu wartości wszystkich sygnałów | ||
+ | <math>s_i</math>, czyli wektora | ||
+ | <math>\vec{s}(t)</math>. Wielozmienny model AR (MVAR, multivariate | ||
+ | autoregressive) można wówczas opisać wzorem: | ||
− | == | + | <math> |
+ | \displaystyle | ||
+ | \vec{s}(t)=\sum_{i=1}^p A(i) \vec{s}(t-i) + \vec{\epsilon}(t) , | ||
+ | </math> | ||
− | + | gdzie <math>\vec{\epsilon}(t)</math> będzie wektorem | |
− | + | szumów, zaś <math>A(i)</math> będą macierzami współczynników modelu. | |
− | + | Przechodząc do przestrzeni częstości otrzymamy: | |
− | </math> | + | |
− | |||
− | |||
− | + | <math> | |
+ | \displaystyle | ||
+ | \vec{s}(\omega)=A^{-1}(\omega)\vec{\epsilon}(\omega)=H(\omega)\vec{\epsilon}(\omega), | ||
+ | </math> | ||
− | |||
− | + | gdzie <math>H(\omega)</math> jest macierzą przejścia. MVAR jest modelem typu "czarna skrzynka", gdzie na wejściu występują szumy, na wyjściu sygnały, a system jest opisany przez macierz przejścia. Zawiera ona informacje o własnościach widmowych sygnałów i związkach między nimi. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Na podstawie macierzy <math>H(\omega)</math> można obliczyć macierz | |
+ | gęstości widmowej zawierającą widma mocy dla pojedynczych kanałów jak | ||
+ | również funkcje wzajemnej gęstości mocy pomiędzy kanałami. Stosując | ||
+ | tego typu podejście, w którym wszystkie sygnały generowane przez | ||
+ | pewien proces są rozpatrywane jednocześnie, można policzyć z macierzy | ||
+ | spektralnej nie tylko koherencje zwykłe pomiędzy dwoma kanałami, ale | ||
+ | również koherencje wielorakie opisujące związek danego kanału z | ||
+ | pozostałymi i koherencje cząstkowe opisujące bezpośrednie związki | ||
+ | między dwoma kanałami po usunięciu wpływu pozostałych kanałów. W | ||
+ | przypadku gdy pewien kanał 1 będzie wpływał na kanały 2 i 3, | ||
+ | obliczając koherencję zwykłą znajdziemy związek między 2 oraz 3, | ||
+ | chociaż nie są one ze sobą bezpośrednio powiązane, natomiast | ||
+ | koherencja cząstkowa nie wykaże związku między nimi. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Macierz <math>H(\omega)</math> jest niesymetryczna, a jej wyrazy | |
+ | pozadiagonalne mają sens przyczynowości Grangera, co oznacza, że | ||
+ | uwzględnienie wcześniejszej informacji zawartej w jednym z sygnałów | ||
+ | zmniejsza błąd predykcji drugiego sygnału. Opierając się na tej | ||
+ | własności zdefiniowano Kierunkową Funkcję Przejścia (DTF, directed | ||
+ | transfer function) jako znormalizowany element pozadiagonalny | ||
+ | <math>H(\omega)</math>. DTF opisuje kierunek propagacji i skład | ||
+ | widmowy rozchodzących się sygnałów. | ||
− | |||
− | |||
− | + | Otrzymamy w ten sposób całościowy opis zmian wszystkich sygnałów | |
+ | jednocześnie. Co ciekawe, obliczona na tej podstawie funkcja | ||
+ | charakteryzująca zależności między sygnałami <math>s_i</math> (funkcja | ||
+ | przejścia) nie jest symetryczna, w przeciwieństwie do | ||
+ | np. korelacji. Dzięki temu może służyć wnioskowaniu nie tylko o sile | ||
+ | zależności między poszczególnymi sygnałami składowymi, ale też o | ||
+ | kierunku przepływu informacji między nimi. W przybliżeniu odpowiada | ||
+ | to informacji, w którym z sygnałów struktury odpowiadające danej | ||
+ | częstości pojawiają się wcześniej. | ||
− | + | [[Plik:DTF.png|400px|thumb|center|MVAR, dzięki uprzejmości Macieja Kamińskiego]] | |
− | |||
+ | <references/> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | + | <div align="right"> |
+ | [[Model_autoregresyjny_(AR)|⬅]] [[Analiza_sygnałów_-_wykład|⬆]] [[Filtry|⮕]] | ||
+ | </div> |
Aktualna wersja na dzień 08:01, 23 lip 2024
Spis treści
AS/ Transformata Z i widmo procesu AR
Transformata Z
Jednostronna transformata [math]\mathcal{Z}[/math] ciągu liczb [math]x[n][/math] definiowana jest jako funkcja zmiennej [math]z[/math] będąca sumą szeregu
- [math] \displaystyle \mathcal{Z}\{x[n]\} = X(z)= \sum_{n=0}^{\infty} x[n] z^{-n} [/math]
czyli np. [math] \mathcal{Z}\{(2, 7, 3)\} = 2 z + 7 z^{-1} + 3 z^{-2} [/math]
Dla [math]z=e^{i \omega}[/math] dostajemy Dyskretną Transformatę Fouriera.
- [math] \displaystyle X(z=e^{i \omega})= \sum_{n=0}^{\infty} x[n] e^{- i \omega n} [/math]
Transformata [math]\mathcal{Z}[/math] jest liniowa
- [math] \displaystyle \mathcal{Z}\lbrace a x[n] + b y[n]\rbrace =a X[z] + b Y[z] [/math]
a dla przesunięcia w czasie
- [math] \displaystyle \mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k}X(z) [/math]
Dowód:
- [math] \displaystyle \mathcal{Z}\lbrace x[n-k]\rbrace = \sum_{n=0}^{\infty} x[n-k] z^{-n} \;\; \stackrel{ j \rightarrow n-k }{=} \;\; \sum_{j=-k}^{\infty} x[j] z^{-(j+k)} = [/math]
- [math] \displaystyle = \sum_{j=-k}^{\infty} x[j] z^{-j} z^{-k} = z^{-k} \sum_{j=-k}^{\infty} x[j] z^{-j} [/math]
dla systemów przyczynowych [math]x[j][/math] są niezerowe dla [math]j\gt 0[/math] (por. LTI/Splot i przyczynowość)
więc
- [math]\displaystyle \mathcal{Z}\lbrace x[n-k]\rbrace = z^{-k} \sum_{j=0}^{\infty} x[j] z^{-j} [/math]
Niech [math]x[n]=x_1[n]*x_2[n][/math]; wtedy transformata [math]\mathcal{Z}[/math] splotu to iloczyn transformat [math]\mathcal{Z}[/math]:
- [math] \displaystyle \mathcal{Z}\{x[n]\} = X(z) = \mathcal{Z}\{x_1[n]\} \mathcal{Z}\{x_2[n]\} = X_1(z) X_2(z) [/math]
Dowód:
- [math] \displaystyle \mathcal{Z}\{x_1(n)*x_2(n)\} = X(z) = [/math]
- [math] \displaystyle \sum_{n=-\infty}^\infty\left[\sum_{k = -\infty}^\infty x_1(k)x_2(n-k)\right]z^{-n}[/math]
- [math]= \displaystyle \sum_{k = -\infty}^\infty x_1(k)\left[\sum_{n=-\infty}^\infty x_2(n-k)z^{-n}\right][/math]
- [math]= \displaystyle \sum_{k = -\infty}^\infty x_1(k)\left[\sum_{n = -\infty}^\infty x_2(n-k)z^{-(n-k)}z^{-k}\right] [/math]
- niech [math]n-k = l[/math]
- [math] \displaystyle X(z) = \sum_{k = -\infty}^\infty x_1(k)\left[z^{-k}\sum_{l=-\infty}^\infty x_2(l)z^{-l}\right][/math]
- [math]= \displaystyle \sum_{k = -\infty}^\infty x_1(k) z^{-k} X_2(z)[/math]
- [math]= \displaystyle X_1(z) X_2(z) [/math]
Widmo procesu AR
kładąc [math] a_0 = 1[/math], proces AR o znanych współczynnikach [math]a_i[/math]
- [math] \displaystyle x[n] = \sum_{i=1}^M a_i x[n-i] + \epsilon[n] [/math]
możemy zapisać jako
- [math] \displaystyle \sum_{i=0}^M a_i x[n-i] = \epsilon[n] [/math]
Biorąc transformatę Z obu stron
- [math] \displaystyle \mathcal{Z}\left\{\sum_{i=0}^M a_i x[n-i] \right\} = \mathcal{Z}\left\{ \epsilon[n] \right\} [/math]
dostajemy
[math] A(z) X(z) = E(z) [/math]
[math] X(z) = \dfrac{E(z)}{A(z)} [/math]
oznaczając
[math]\displaystyle H(z) \stackrel{def}{=} A^{-1}(z) = \dfrac{1}{\sum a_i z^{-i}}[/math]
dostajemy
[math] X(z) = H(z) E(z) = \dfrac{E(z)}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \ldots} [/math]
podstawiając [math]z=e^{i\omega t}[/math] przechodzimy z transformaty [math]\mathcal{Z}[/math] do transformaty Fouriera [math]\mathcal{F}(x) = \hat{x}(\omega)[/math]
- [math] \hat{x}(\omega) = H(\omega) E(\omega) [/math]
widmo to kwadrat modułu transformaty Fouriera
- [math] \displaystyle \left| \hat{x}(\omega) \right| ^2 = \left| H(\omega) E(\omega) \right|^2 = \\ \,\;\;\;\;\;\;\;\;\;\; = \left| H(\omega) \right|^2 \sigma^2 = \dfrac{\sigma^2}{\left| {A(e^{-i\omega n})} \right|^2} = \dfrac{\sigma^2}{\left|a_0 + a_1 e^{-i\omega} + a_2 e^{- 2 i\omega} + \ldots \right|^2} [/math]
gdzie [math]\sigma^2[/math] to wariancja nieskorelowanego szumu [math]\epsilon[/math], którego widmo jest płaskie (nie zależy od częstości)
Wielozmienny model AR
Model AR opisuje wartość sygnału w chwili [math]t[/math] jako kombinację liniową jego wartości w chwilach poprzednich (oraz szumu). W przypadku wielowymiarowym możemy włączyć do tego opisu wartości wszystkich sygnałów [math]s_i[/math], czyli wektora [math]\vec{s}(t)[/math]. Wielozmienny model AR (MVAR, multivariate autoregressive) można wówczas opisać wzorem:
[math]
\displaystyle
\vec{s}(t)=\sum_{i=1}^p A(i) \vec{s}(t-i) + \vec{\epsilon}(t) ,
[/math]
gdzie [math]\vec{\epsilon}(t)[/math] będzie wektorem
szumów, zaś [math]A(i)[/math] będą macierzami współczynników modelu.
Przechodząc do przestrzeni częstości otrzymamy:
[math]
\displaystyle
\vec{s}(\omega)=A^{-1}(\omega)\vec{\epsilon}(\omega)=H(\omega)\vec{\epsilon}(\omega),
[/math]
gdzie [math]H(\omega)[/math] jest macierzą przejścia. MVAR jest modelem typu "czarna skrzynka", gdzie na wejściu występują szumy, na wyjściu sygnały, a system jest opisany przez macierz przejścia. Zawiera ona informacje o własnościach widmowych sygnałów i związkach między nimi.
Na podstawie macierzy [math]H(\omega)[/math] można obliczyć macierz
gęstości widmowej zawierającą widma mocy dla pojedynczych kanałów jak
również funkcje wzajemnej gęstości mocy pomiędzy kanałami. Stosując
tego typu podejście, w którym wszystkie sygnały generowane przez
pewien proces są rozpatrywane jednocześnie, można policzyć z macierzy
spektralnej nie tylko koherencje zwykłe pomiędzy dwoma kanałami, ale
również koherencje wielorakie opisujące związek danego kanału z
pozostałymi i koherencje cząstkowe opisujące bezpośrednie związki
między dwoma kanałami po usunięciu wpływu pozostałych kanałów. W
przypadku gdy pewien kanał 1 będzie wpływał na kanały 2 i 3,
obliczając koherencję zwykłą znajdziemy związek między 2 oraz 3,
chociaż nie są one ze sobą bezpośrednio powiązane, natomiast
koherencja cząstkowa nie wykaże związku między nimi.
Macierz [math]H(\omega)[/math] jest niesymetryczna, a jej wyrazy
pozadiagonalne mają sens przyczynowości Grangera, co oznacza, że
uwzględnienie wcześniejszej informacji zawartej w jednym z sygnałów
zmniejsza błąd predykcji drugiego sygnału. Opierając się na tej
własności zdefiniowano Kierunkową Funkcję Przejścia (DTF, directed
transfer function) jako znormalizowany element pozadiagonalny
[math]H(\omega)[/math]. DTF opisuje kierunek propagacji i skład
widmowy rozchodzących się sygnałów.
Otrzymamy w ten sposób całościowy opis zmian wszystkich sygnałów
jednocześnie. Co ciekawe, obliczona na tej podstawie funkcja
charakteryzująca zależności między sygnałami [math]s_i[/math] (funkcja
przejścia) nie jest symetryczna, w przeciwieństwie do
np. korelacji. Dzięki temu może służyć wnioskowaniu nie tylko o sile
zależności między poszczególnymi sygnałami składowymi, ale też o
kierunku przepływu informacji między nimi. W przybliżeniu odpowiada
to informacji, w którym z sygnałów struktury odpowiadające danej
częstości pojawiają się wcześniej.