Przekształcenie Fouriera: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 16: Linia 16:
  
  
<equation id="eq:21">
+
<math>
<math>\displaystyle
+
\mathbf{(IFT)} \qquad \displaystyle s(t)=\int_{-\infty}^{\infty}\hat{s}(f)e^{-i 2\pi t f} d f
s(t)=\int_{-\infty}^{\infty}\hat{s}(f)e^{-i 2\pi t f} d f  
 
 
</math>
 
</math>
</equation>
+
 
 
  
 
funkcja <math>\hat{s}(f)</math>, zastępująca dyskretny ciąg współczynników szeregu Fouriera
 
funkcja <math>\hat{s}(f)</math>, zastępująca dyskretny ciąg współczynników szeregu Fouriera
Linia 31: Linia 29:
  
  
to transformata Fouriera sygnału <math>s(t)</math>, czyli wynik działania przekształcenia (transformacji) Fouriera <math>\mathcal{F}</math>.
+
to transformata Fouriera sygnału <math>s(t)</math>, czyli wynik działania przekształcenia (transformacji) Fouriera <math>\mathcal{F}</math>.  
 
    
 
    
  
Linia 49: Linia 47:
  
  
Jak widać, transformata Fouriera jest zespoloną funkcją częstości.
+
Transformata Fouriera jest zespoloną funkcją częstości — jak widać ze wzoru '''(IFT)''', jest to operacja '''odwracalna'''.  
Jej moduł dla danej częstości <math>f</math> opisuje jej "zawartość" w sygnale, a faza odpowiada za "składanie" poszczególnych częstości w sygnał <xr id="eq:21">(%i)</xr>.
 
  
 +
Moduł transformaty Fouriera dla danej częstości <math>f</math> opisuje jej "zawartość" w sygnale, a faza odpowiada za "składanie" poszczególnych częstości w sygnał <xr id="eq:21">(%i)</xr>.
 +
 +
<!--
 
Moduł transformaty Fouriera odpowiada<ref>
 
Moduł transformaty Fouriera odpowiada<ref>
 
Jeśli znamy dokładnie wartości sygnału od <math>-\infty</math> do <math>\infty</math>; w praktyce tak się nie zdarza, stąd  
 
Jeśli znamy dokładnie wartości sygnału od <math>-\infty</math> do <math>\infty</math>; w praktyce tak się nie zdarza, stąd  
Linia 64: Linia 64:
 
może wyjątkowo patologiczne zachowanie funkcji, jak nieskończona liczba ekstremów lub punktów nieciągłości  
 
może wyjątkowo patologiczne zachowanie funkcji, jak nieskończona liczba ekstremów lub punktów nieciągłości  
 
w skończonym przedziale. Podobnie wygląda sytuacja dla szeregów Fouriera.</ref>.
 
w skończonym przedziale. Podobnie wygląda sytuacja dla szeregów Fouriera.</ref>.
 
+
-->
  
 
===Tożsamość Parsevala dla całek Fouriera===
 
===Tożsamość Parsevala dla całek Fouriera===

Wersja z 15:13, 30 sie 2024

AS/ Przekształcenie Fouriera

A jeśli sygnał nie jest ściśle okresowy? Jeśli pewne struktury powtarzają się, ale nie na tyle dokładnie by spełnić matematyczny wymóg okresowości [math]\forall t \, s(t + T) = s(t)[/math]?

Przejdźmy do nieskończoności z okresem sygnału: [math]T\rightarrow\infty[/math]. Wtedy odstęp [math]\left(\frac{2\pi}{T}\right)[/math] między częstościami kolejnych elementów sumy z wyprowadzonego w poprzednim rozdziale wzoru na szereg Fouriera


[math]\displaystyle s(t) =\sum_{n=-\infty}^{+\infty} c_n e^{-i\frac{2\pi t}{T} n}, [/math]


dąży do [math]0[/math] i suma przechodzi w całkę


[math] \mathbf{(IFT)} \qquad \displaystyle s(t)=\int_{-\infty}^{\infty}\hat{s}(f)e^{-i 2\pi t f} d f [/math]


funkcja [math]\hat{s}(f)[/math], zastępująca dyskretny ciąg współczynników szeregu Fouriera


[math]\displaystyle c_{n} = \frac{1}{T}\int_{0}^{T} s(t) e^\frac{2\pi i n t}{T} d t [/math]


to transformata Fouriera sygnału [math]s(t)[/math], czyli wynik działania przekształcenia (transformacji) Fouriera [math]\mathcal{F}[/math].


[math]\displaystyle \mathcal{F}\left( s(t) \right) \equiv \hat{s}(f)=\int_{-\infty}^{\infty}s(t)e^{i 2\pi f t} d t [/math]


Transformata Fouriera jest zespoloną funkcją częstości — jak widać ze wzoru (IFT), jest to operacja odwracalna.

Moduł transformaty Fouriera dla danej częstości [math]f[/math] opisuje jej "zawartość" w sygnale, a faza odpowiada za "składanie" poszczególnych częstości w sygnał (???).


Tożsamość Parsevala dla całek Fouriera

[math]\displaystyle \int_{-\infty}^{\infty} | s(t) |^2 d t = \int_{-\infty}^{\infty} | \hat{s}( f ) |^2 d f [/math]


Dowód:


[math]\displaystyle \int_{-\infty}^{\infty} | s(t) |^2 d t = \int_{-\infty}^{\infty} s(t) \overline{s(t)} dt = \int_{-\infty}^{\infty} s(t) \left( \int_{-\infty}^{\infty} \overline{ \hat{s}(f)} e^{i 2\pi t f} d f \right) dt = [/math]


[math]\displaystyle = \int_{-\infty}^{\infty} \overline{ \hat{s}(f)} \left( \int_{-\infty}^{\infty}s(t)e^{i 2\pi t f} d t \right) df = \int_{-\infty}^{\infty} \overline{ \hat{s}(f)} \hat{s}(f) d f = \int_{-\infty}^{\infty} | \hat{s}(f) |^2 d f [/math]

Przy przejściu do drugiej linii zamieniono kolejność całkowania według Twierdzenia Fubiniego:

Niech [math]g:[a,b]\times [c,d]\longrightarrow {\mathbb R}[/math] — funkcja ciągła. Wówczas
[math]\int\limits_a^b\left(\int\limits_c^d g(x,y)\,dy\right)\,dx=\int\limits_c^d\left(\int\limits_a^b g(x,y)\,dx\right)\,dy=\int\limits_{[a,b]\times [c,d]} g(x,y)\,d(x,y)[/math].


Konwencje zapisu przekształcenia Fouriera

Szczególna postać wzorów (???) i (1) wynika z przyjęcia konwencji wyrażania częstości jako odwrotności czasu: [math]f = \frac{1}{T}[/math] (w hercach). Dowolność pozostaje w umieszczeniu minusa w wykładniku - we wzorze na transformatę odwrotną (???) lub we wzorze (1). Z kolei przyjęcie częstości kołowej [math]\omega = \frac{2\pi}{T}[/math] (w radianach) przenosi czynnik [math]2\pi[/math] (konkretnie jego odwrotność) z wykładnika przed całkę. Stąd różnorodność możliwych par wzorów:


[math] s(t)=\int_{-\infty}^{\infty}\hat{s}(f)e^{-i 2\pi t f} d f \rightarrow \hat{s}(f)=\int_{-\infty}^{\infty}s(t)e^{i 2\pi f t} d t [/math]

[math] s(t)=\int_{-\infty}^{\infty}\hat{s}(f)e^{i 2\pi t f} d f \rightarrow \hat{s}(f)=\int_{-\infty}^{\infty}s(t)e^{-i 2\pi f t} d t [/math]

[math] s(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{s}(\omega)e^{i \omega t} d \omega \rightarrow \hat{s}(\omega)=\int_{-\infty}^{\infty}s(t)e^{-i \omega t} d t [/math]

[math] s(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{s}(\omega)e^{-i \omega t} d \omega \rightarrow \hat{s}(\omega)=\int_{-\infty}^{\infty}s(t)e^{i \omega t} d t [/math]

[math] s(t)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\hat{s}(\omega)e^{-i \omega t} d \omega \rightarrow \hat{s}(\omega)={1\over{\sqrt{2\pi}}}\int_{-\infty}^{\infty}s(t)e^{i \omega t} d t [/math]

[math] s(t)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\hat{s}(\omega)e^{i \omega t} d \omega \rightarrow \hat{s}(\omega)={1\over{\sqrt{2\pi}}}\int_{-\infty}^{\infty}s(t)e^{-i \omega t} d t [/math]

Przyjmujemy wywodzącą się z matematyki konwencję dodatniego wykładnika we wzorze na transformację (1) i ujemnego we wzorze na transformację odwrotną (???); ewentualne stosowanie częstości kołowej można odróżnić po użyciu symbolu [math]\omega[/math] jako argumentu transformaty. W zastosowaniach inżynierskich przeważa konwencja ujemnego wykładnika we wzorze na transformację.

Symetrie i własności Transformaty Fouriera

jeśli sygnał [math]s(t)[/math] jest[math]\ldots[/math] to [math]\mathcal{F} s(t) \equiv \hat{s}(\omega)\ \ldots[/math]
parzysty ([math]s(t)=s(-t)[/math]) parzysta
nieparzysty ([math]s(t)=-s(-t)[/math]) nieparzysta
rzeczywisty [math] \hat{s}(-\omega) = \overline{\hat{s}(\omega})[/math]
urojony [math]\hat{s}(-\omega) = -\overline{\hat{s}(\omega})[/math]
rzeczywisty i parzysty rzeczywista i parzysta
rzeczywisty i nieparzysty urojona i nieparzysta
urojony i parzysty urojona i parzysta
urojony i nieparzysty rzeczywista i nieparzysta
Symetrie transformat Fouriera


skalowanie w czasie: [math]s(a t)[/math] & [math]\stackrel{\mathcal{F}}{\Longrightarrow}[/math] & [math]\frac{1}{|a|} \hat{s}(\frac{f}{a})[/math]
skalowanie w częstości: [math]\frac{1}{|a|} s(\frac{t}{a})[/math] & [math]\stackrel{\mathcal{F}}{\Longrightarrow}[/math] & [math]\hat{s}(a f)[/math]
przesunięcie w czasie: [math]s(t - t_0)[/math] & [math]\stackrel{\mathcal{F}}{\Longrightarrow}[/math] & [math]\hat{s}(f) \;e^{2 \pi i f t_0}[/math]
przesunięcie w częstości: [math]s(t) \;e^{- 2 \pi i f_0 t}[/math] & [math]\stackrel{\mathcal{F}}{\Longrightarrow}[/math] & [math]\hat{s}(f - f_0)[/math]
Skalowanie i przesunięcie transformat Fouriera

Powyższe wzory wyprowadzić można bezpośrednio z definicji (???) i (1).


Rozdzielczość (F)FT

Jako przykład spróbujmy rozszyfrować, skąd w przykładowym artykule o interfejsach mózg-komputer[1] pojawiają się dziwne częstości 6,83 i 7,03 Hz.







  1. Xiaorong Gao, Dingfeng Xu, Ming Cheng and Shangkai Gao, "A BCI-based environmental controller for the motion-disabled" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 137-140, June 2003, doi: 10.1109/TNSRE.2003.814449, https://web.archive.org/web/20091114205637id_/http://www.cis.gsu.edu/brainlab/papers/gao%202003%20-%2048N%20BCI.pdf