Wstep
Spis treści
Próbkowanie sygnałów analogowych
Sygnały zapisujemy, przetwarzamy i analizujemy w postaci ciągów liczb. Przejście od sygnału ciągłego do cyfrowego odbywa się przez proces próbkowania, czyli zapisywania kolejnych amplitud sygnału w ustalonych, stałych odstępach czasu, omawiany wcześniej na TIiK.
Ciągły sygnał z górnego rysunku, po próbkowaniu w punktach symbolizowanych czarnymi kropkami na rysunku dolnym, na dysku zostaje zapisany jako ciąg liczb:
102, 195, 80, 16, 147, 178
Żeby odtworzyć fizyczne własności sygnału, czyli narysować zapisane wartości próbek (czarne kropki) w odpowiedniej skali, musimy znać częstość próbkowania i stałą kalibracji.
Wyrażana w hercach (Hz) częstość próbkowania (ang. sampling frequency, [math]f_s[/math]) to liczba próbek na sekundę. Jest ona odwrotnością odstępu w czasie między kolejnymi próbkami ([math]\Delta t[/math]):
[math]f_s = \dfrac{1}{\Delta t}[/math]
Stała kalibracji to współczynnik, przez który mnożymy zapisane liczby, żeby otrzymać wartości w jednostkach fizycznych, na przykład mikrowoltach.
Oczywiście musimy też wiedzieć, w jakim formacie zapisano na dysku liczby (omawiany rok temu na wykładzie o binarnych reprezentacjach liczb), oraz, w przypadku sygnałów wielozmiennych o jednolitym próbkowaniu, znać liczbę kanałów. Taka dodatkowa informacja (metainformacja) jest konieczna do poprawnego wyświetlenia danych z pliku.
Aliasing
Poza znajomością zależności między zapisanymi liczbami a jednostkami fizycznymi w procesie próbkowania kluczową rolę odgrywa twierdzenie o próbkowaniu (inaczej twierdzenie Nyquista-Shannona, czasem w skrócie twierdzenie Nyquista). Mówi ono, że sygnał ciągły możemy odtworzyć za zapisanych próbek, jeśli częstość próbkowania [math]f_p[/math] była wyższa niż dwukrotność najwyższej z występujących w sygnale częstości [math]f_{max}[/math], nazywana częstością Nyquista [math]f_N[/math]:
[math] f_s = \dfrac{1}{\Delta t} \gt 2* f_{max} = f_N[/math]
Jeśli częstość próbkowania nie była wystarczająco wysoka, nie tylko stracimy informację o zmianach amplitudy sygnału "pomiędzy próbkami", ale dojdzie też do zafałszowania sygnału w niższych częstościach, które z pozoru nie powinny być zaburzone. Efekt ten jest bliżej omówiony w rozdziale Aliasing.
Sygnał dyskretny jako wektor
Skoro sygnał to po prostu ciąg liczb, możemy go potraktować jak wektor. Na płaszczyźnie wektor to para współrzędnych (x, y), w przestrzeni trójwymiarowej trójka liczby (x, y, z), które wyobrażamy sobie jako strzałkę wiodącą od punktu (0, 0, 0) do (x, y, z). Sygnał składający się z pięciu punktów będzie wektorem w przestrzeni pięciowymiarowej, więc intuicja "strzałki" dla większości z nas przestaje być użyteczna. Pomimo tego, możemy możemy wciąż korzystać z użyecznych pojęć z dziedziny algebry wektorów, jak ortogonalność czy iloczyn skalarny.
Iloczyn skalarny
Iloczyn skalarny przyjmiemy jako miarę podobieństwa dwóch sygnałów. Obliczać go będziemy tak samo jak dla wektorów — przypomnijmy: niech [math]\mathbf{x} = [x_1, x_2, x_3][/math], i [math]\mathbf{y} = [y_1, y_2, y_3][/math]; iloczyn skalarny tych wektorów oznaczamy [math]\mathbf x \cdot \mathbf y[/math] (zarówno wytłuszczenie symboli wektorów, jak i symbol mnożenia/ilocznu skalarnego "[math]\cdot[/math]", będziemy dalej pomijać):
[math]\displaystyle \mathbf a \cdot \mathbf b = \sum_{i=1}^3 x_i y_i = x_1 y_1 + x_2 y_2 + x_3 y_3[/math]
A jak to będzie wyglądać dla sygnałów złożonych z więcej niż trzech punktów? Weźmy
[math]x=[-2, -2, 2, -1, -2][/math]
[math]y=[-1, -1, 1, 1, 0][/math]
Zamiast strzałek w pięciowymiarowej przestrzeni, łatwiej wizualizować na wykresach wartości kolejnych próbek:
[math]x\cdot y = [-2, -2, 2, -1, -2] \cdot [-1, -1, 1, 1, 0] = 2+2+2-1+0 = 5[/math]
Energia sygnału
Iloczyn skalarny sygnału z samym sobą, czyli [math]x\cdot x[/math], w analizie sygnałów nazywać będziemy jego energią — jeśli sygnałem będzie np. prąd elektryczny, płynący w obwodzie o jednostkowej oporności, to wytracona przez niego energia wyniesie właśnie [math]x\cdot x[/math]
[math]x\cdot x = [-2, -2, 2, -1, -2] \cdot [-2, -2, 2, -1, -2] = 4+4+4+1+4=17[/math]
Ortogonalność
Kolejnym użytecznym pojęciem, które możemy zaczerpnąć bezpośrednio z algebry wektorów, jest ortogonalność. Dwa wektory (sygnały) są do siebie ortogonalne, jeśli ich iloczyn skalarny wynosi zero, jak poniżej:
W przypadku sygnału złożonego z 16 punktów, możemy ten fakt sprawdzić obliczając iloczyn skalarny punkt po punkcie, albo też zauważając prawidłowości występujące w każdym okresie górnego sygnału. W przypadku dłuższych i bardziej złożonych sygnałów może to już nie być takie oczywiste, jak np. ortogonalność wszystkich sinusów na poniższym rysunku, których częstości są całkowitymi wielokrotnościami częstości podstawowej:
Liczby zespolone
Przypomnijmy w skrócie: [math]i^2=-1[/math]. Liczbę zespoloną [math]z[/math] możemy zapisać w postaci algebraicznej jako
- [math]z=a+bi,[/math]
gdzie [math]a[/math] to część rzeczywista, [math]b[/math] — część urojona.
Sprzężenie zespolone liczby [math]z[/math] oznaczamy [math]\overline{z}[/math]:
- [math]\overline{z} = a - bi[/math]
a jej moduł to [math]|z| = \sqrt{a^2 + b^2}[/math] (inaczej [math]|z| = z \cdot \overline{z}[/math]).
Postać trygonometryczna:
- [math]z = a + bi = |z| \cdot \dfrac{a}{|z|} + |z| \cdot \dfrac{b}{|z|}i = |z| \cdot (\cos \phi + i\sin \phi).[/math]
Wykorzystując wzór Eulera
- [math]e^{i\phi} = \cos(\phi) + i\sin(\phi)[/math]
możemy liczbę zespoloną zapisać jako
- [math]z = |z|e^{i\phi}[/math]