Aliasing: Różnice pomiędzy wersjami
Linia 66: | Linia 66: | ||
<math>\Delta t</math>. | <math>\Delta t</math>. | ||
− | + | Poniższe rysunki z [[http://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem Wikipedii]] ilustrują ten efekt dla przypadku próbkowania z częstością większą i mniejszą od częstości Nyquista: | |
− | + | ||
+ | [[Plik:ReconstructFilter.png|400px]] | ||
+ | [[Plik:AliasedSpectrum.png|400px]] | ||
+ | |||
+ | |||
+ | Kolejny przykład ilustruje aliasing w dziedzinie czasu: | ||
[[Plik:klasyczna_rys_5.jpg|thumb|center|400px|<figure id="fig:36"></figure>Próbkowanie (<math>\Delta t = 1</math>) sygnałów o częstościach: (a) 0.27, (b) 1.27 i (c) 0.6. | [[Plik:klasyczna_rys_5.jpg|thumb|center|400px|<figure id="fig:36"></figure>Próbkowanie (<math>\Delta t = 1</math>) sygnałów o częstościach: (a) 0.27, (b) 1.27 i (c) 0.6. | ||
Linia 80: | Linia 85: | ||
(w tym przypadku <math>r = 1</math> a "zawija się" dokładnie częstość <math>-0.6</math>)]] | (w tym przypadku <math>r = 1</math> a "zawija się" dokładnie częstość <math>-0.6</math>)]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
<references/> | <references/> |
Wersja z 18:16, 29 paź 2015
Spis treści
AS/ Przekształcenie Fouriera sygnałów dyskretnych, aliasing
Animacja pokazująca efekt aliasingu
Kliknij na tym napisie aby obejrzeć animację pokazującą efekt aliasingu na sygnale jednowymiarowym
Próbkowanie odwrotnej transformaty Fouriera
Przypomnijmy wzór na odwrotną transformację Fouriera sygnału ciągłego [math] s(t)=\int_{-\infty}^{\infty}\hat{s}(f)e^{-i 2\pi t f} d f [/math]
Dyskretne wartości tego sygnału, próbkowane w chwilach [math]n \Delta t[/math], możemy odtworzyć z powyższgo równania dla [math]t = n \Delta t[/math]
[math] \sum_{r=-\infty}^\infty \int_\frac{(2r - 1)}{2\Delta t}^\frac{(2r + 1) }{2\Delta t} \hat{s}(f)e^{-i 2\pi n \Delta t f} d f \;\; \stackrel{f \rightarrow f+\frac{r}{\Delta t}}{=} \;\; [/math] [math] \sum_{r=-\infty}^\infty \int_\frac{-1}{2\Delta t}^\frac{1}{2\Delta t} \hat{s}\left(f + \frac{r}{\Delta t}\right)e^{-i 2\pi n \Delta t (f + \frac{r}{\Delta t})} d f [/math]
[math] = \int_\frac{-1}{2\Delta t}^\frac{1}{2\Delta t} \sum_{r=-\infty}^\infty \hat{s}\left(f + \frac{r}{\Delta t}\right)e^{-i 2\pi n \Delta t f} d f [/math]Szukając wartości sygnału w dyskretnych chwilach czasu, dostaliśmy w miejsce odwrotnej transformaty Fouriera całkę w ograniczonym zakresie z funkcji będącej (nieskończoną) sumą powtórzeń transformaty Fouriera sygnału ciągłego, przesuwanej o wielokrotności odwrotności [math]\Delta t[/math].
Splot z grzebieniem Diraca
Innym sposobem pokazania powyższego efektu jest przedstawienie sekwencji dyskretnej [math]s[n][/math] jako iloczynu sygnału ciągłego [math]s(t)[/math] z grzebieniem Diraca
[math] D(t) = \sum_{k=-\infty}^{\infty} \delta(t-k\delta t) [/math]
Policzmy transformatę Fouriera grzebienia Diraca [math]\hat{D}(t)[/math]:
[math] \hat{D}(f) = \mathcal{F}(D(t)) = \mathcal{F}\left(\sum_{k=-\infty}^{\infty} \delta(t-k\Delta t) \right) = \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \delta(t-k\Delta t) e^{i 2\pi f t} dt = [/math] [math] \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(t-k\Delta t) e^{i 2\pi f t} dt = \sum_{k=-\infty}^{\infty} e^{i 2\pi f k\Delta t} [/math]
Zgodnie z twierdzeniem o splocie, iloczyn sygnału z grzebieniem Diraca w przestrzeni czasu będzie odpowiadał w dziedzinie częstości, splotowi transformaty Fouriers sygnału [math]\hat{s}(t)[/math] z wyliczoną powyżej transformatę Fouriera grzebienia Diraca, będącą jak widać grzebieniem Diraca w przestrzeni częstości.
Przypomnijmy (np. z rozważań o systemach liniowych niezmienniczych w czasie), że splot z deltą Diraca w zerze jest identycznością, a splot z [math]\delta(t-kT)[/math] przesuwa funkcję o [math]kT[/math]. Z liniowości splotu dostajemy sumę powtórzeń transformaty Fouriera sygnału ciągłego, przesuwanej o wielokrotności odwrotności [math]\Delta t[/math].
Poniższe rysunki z [Wikipedii] ilustrują ten efekt dla przypadku próbkowania z częstością większą i mniejszą od częstości Nyquista:
Kolejny przykład ilustruje aliasing w dziedzinie czasu: