Analiza sygnałów - wykład: Różnice pomiędzy wersjami

Z Brain-wiki
Linia 1: Linia 1:
 
__NOTOC__
 
__NOTOC__
===[[Wstep | Wstęp]]: sygnały, próbkowanie, wektory, liczby zespolone, szereg i przekształcenie Fouriera===
+
===[[Wstep | Wstęp]]===
 +
Sygnały, próbkowanie, wektory, liczby zespolone, szereg i przekształcenie Fouriera.
  
 
===Klasyczna analiza sygnałów===
 
===Klasyczna analiza sygnałów===

Wersja z 17:40, 2 wrz 2024

Wstęp

Sygnały, próbkowanie, wektory, liczby zespolone, szereg i przekształcenie Fouriera.

Klasyczna analiza sygnałów

  1. Szereg Fouriera i Przekształcenie Fouriera
  2. Twierdzenie o splocie
    1. Estymacja widma na podstawie Transformaty Fouriera
  3. Model autoregresyjny
  4. Systemy liniowe niezmiennicze w czasie
  5. Transformata Z i widmo procesu AR
  6. Funkcja przejścia i filtry LTI

Pomiędzy czasem a częstością

  1. Spektrogram — oknowana transformata Fouriera, Falki
  2. Zasada nieoznaczoności, Transformata Wignera
  3. Reprezentacje czas-częstość
  4. Przybliżenia adaptacyjne i algorytm matching pursuit

Analiza sygnałów wielozmiennych

  1. PCA, ICA, MVAR
  2. slajdy

Analiza elektroencefalogramu (EEG)

  1. Wstęp (slajdy)
  2. problem odwrotny P300 SSVEP MEG (slajdy)
  3. ERD/ERS (slajdy)
  4. BCI


Materiały dodatkowe


ZAGADNIENIA DO POWTÓRZENIA PRZED EGZAMINEM i organizacja egzaminu


Zapraszamy do korzystania z aktualnej wersji omawianego na wykładzie i ćwiczeniach narzędzia do eksperymentowania z metodami analizy sygnałów — programu SVAROG. Instrukcja pobrania i uruchamiania jest w materiałach do ćwiczeń, najnowszą wersję można pobrać z gitlab lub bezpośrednio ze strony svarog.pl.


Całość podręcznika jest udostępniona na licencji Creative Commons Uznanie autorstwa-Na tych samych zasadach 3.0 Polska. CC-88x31.png Autor: Piotr Durka. Podręcznik powstał częściowo w oparciu o skrypty udostępniane wcześniej na stronach http://www.fuw.edu.pl/~durka/ksiazki/as i książkę MP and unification in EEG analysis